Ed's Big Plans

Computing for Science and Awesome

The Return of Phi C31

without comments

I’ve been so out of the loop with iGEM over the last month. I’ll need to figure out how to get back into the swing of things, probably starting with the post mortem meeting on Tuesday. Generally, since no new maths could be put on the table that actually encompassed the problem well– the brute force approach was kicked into high gear with a few more filters to increase the probability of success.

Call these “System Filters” since they aren’t really based on biologically significant concepts, really just sanity checks that are conceptually consistent with the project (i.e. we’d run out of hard disk space otherwise…). Significantly, Matthew implemented “Blank Stare”, which destroys reactants that exceed a given length (thus preventing them from hogging the CPU looking for less parsimonious solutions). Less significant were Andre’s “Lone Gunman” which deletes arbitrary chromosomes with stochastic efficiency and my “Tag” which prevents chromosomes from cross reacting.

(On second thought, “Tag” IS a “Biological Filter” not a “System Filter” because it removes redundancy by implementing the rule that we only admit bacteria that have exactly one chromosome.)

I should mention that “significance” above isn’t about the triviality of the code, it’s about the amount of anticipated efficiency boon we’d gain from an item’s deployment.

Tomorrow’s post mortem will continue the work I’ve started on our iGEM 2009 Wiki Modelling page… We’ll decide what we want to mention, how close we got to our solution and figure out how to precisely characterize the problem space uncovered by our various attempts.

Additionally, we should probably discuss the relevance of John’s attN site cloning and tests to see if the operators show any sign of degeneracy, and which ones in particular.

Finally, I should mention that Brandon has been working on a C++ port of the whole application we wrote in Python to elucidate how much the virtual machine impacted the performance of our solver– the team is quite divided on this idea with a big half (myself included) thinking that the exponential growth due to the algorithm is the greater factor– Brandon may have some answers for us when it’s up and running.