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Abstract—In this project, we have replicated previous work
which combines the Harmony Search soft computing technique
with the well known fuzzy c-means (FCM) algorithm. The
resulting combination of the two is known as the Harmony
Fuzzy Image Segmentation Algorithm (HFISA). This algorithm
leverages the local optimization capability of the fuzzy c-
means and also the global optimization capability of harmony
search. Harmony Search is similar to Genetic Algorithm in
that it is a stochastic search which creates prospective new
solutions by the random recombination of elements found in
a population of increasingly correct answers to the problem.
Both the fuzzy c-means algorithm and the proposed algorithm
are implemented and tested on the same batch of test images as
used by the original authors. We repeat the use of the statistical
values Partition Coefficient, Partition Entropy, Xie-Beni Index
and PBMF in characterizing the performance of these two
techniques. We verify the results of the original authors that
the proposed algorithm does indeed provide some gain in grey-
level segmentation performance over fuzzy c-means at the cost
of increased computation. Contradicting the original results, we
find that HFISA has reduced model stability as compared to
FCM.

I. INTRODUCTION

In this section, we overview some of recent ideas de-

veloped and proposed which utilize fuzzy set theory as a

means of image segmentation. This task has been broadly

categorized below into techniques that segment based on (1)

the regions of an image, (2) extending fuzzy set theory in

some meaningful way, (3) thresholding the global grey-levels

of an image, and (4) an iterative clustering algorithm.

Region-based segmentation can be performed in a hier-

archical fashion using a nested fuzzy c-means approach as

in the work done by Rezaee et al. [12]. This approach took

the form of a stack of fuzzy c-means classifiers such that

each subsequent layer in the so called pyramid would refine

the segmentation task at a different resolution. Redundantly

representing the same image at different resolutions allowed

the system to perform some planning on how final segmen-

tation should take place. Another approach that considers

spatial information is one evaluating the neighbourhood of

each pixel in an image as in Beevi et al. [2]. In that work,

the authors proposed a modified fuzzy c-means approach

which was capable of mitigating artificial noise introduced

into medical images. Knowledge about specific segmentation

tasks can also be useful. In a study by Plissiti et al. [11], cell

nuclei were segmented by first identifying darkened regions

that are more likely to be cells as observed through a light

microscope. The centroids of these darkened regions were
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considered candidate areas to find cell nuclei whereupon

refinement was then conducted.

Work done by Pednekar and Kakadiaris [10] took advan-

tage of fuzzy set theory in order to segment images based

on a formalization of the perceived connectedness of an

object. Given that the grey level of certain objects may vary

from region to region, an approach using dynamic weights

(DyW) to quantify the allowed change in greyscale is used.

Furthermore, this DyW representation considers the direction

in which the grey values change in order to assign appropriate

memberships. Hasanzadeh et al. [6] performed a similar

task by combining the notions of spatial connectedness

and grey-level thresholding into the so called membership

connectedness.

The work that is replicated in this project falls into the

category of grey-level thresholding. In it, one considers the

number of occurrences for each grey-level that occurs in an

image. This relation can be thought of as a histogram. Recent

work done by Deng et al. [4], introduces interval-valued

fuzzy sets (an extension of set theory) to resolve ambiguities

in membership of some observed grey values. This method

does not change the way the grey-level histograms are

created, but it does propose a different way to interpret them.

Methods have also been developed to alter histograms as in

Aarle and Sijbers [14]. In this method, the global histogram

is calculated based on minimizing the inconsistencies within

image segments and is applied to computed tomography

images.

As well, the work replicated here utilizes a combination of

iterative methods. Iterative methods which are based on K-

means or fuzzy c-means clustering have also been developed

as in Isa et al. [7], [13] who have innovated a method called

Adaptive Fuzzy Moving K-means Clustering. The result is an

algorithm that benefits from (1) the moving of unfit centroids

to new clusters, (2) fuzzy set theory by permitting elements

degrees of memberships in more than one cluster, and (3)

the moving of members to clusters belonging to the nearest

centroid.

II. FOUR MATHEMATICAL OBJECTS

In this project, we replicate the work performed by Man-

dava et al. [1]. These authors created and investigated a

novel strategy to perform grey-level-based image segmen-

tation. This new method is dubbed Harmony Fuzzy Image

Segmentation Algorithm (HFISA). HFISA is a combination

of Harmony Search (HS) [5], [8] and fuzzy c-means clus-

tering (FCM) [3]. FCM is characterized as a method that

is particularly good at local solutions while HS is a method

good at finding global solutions. The combination of the two

allows for a versatile stochastic algorithm.



There are really only four mathematical objects that we

need to consider in order to describe the logical components

of HFISA. These objects are (1) the representation of the

problem, (2) the representation of the centroid corresponding

to each segment, (3) the fuzzy partition of the problem over

each grey level, over each segment, and (4) the harmony

memory. We discuss these components here and connect

them together with the appropriate functions.

To represent the problem, a grey-level histogram is derived

from the image as follows. Let xi be a unique grey-level and

hi be the number of occurrences of that grey-level where

there are q many different grey-levels in a given image (i ∈
[1, q]). For an image considered, this results in a tuple in the

form {(x1, h1), ..(xi, hi), ..(xq, hq)}.

In order to make use of clustering algorithms for the

purpose of segmentation, we can stipulate that each segment

of the image according to a range of grey levels corresponds

to a cluster in the solution. Each cluster has a centroid which

is a real number. We can think of a centroid as a weighted

average of the grey levels of a given segment. The number

of clusters is arbitrarily defined based on the needs of the

user; let us refer to this number with c. Given c clusters, the

centroids can be expressed in a tuple of the form {v1..vj ..vc}.

Now that we have both a representation of the problem

as well as a representation of the centroids along with an

idea of their relationship to segments, we can complete the

picture by describing the fuzzy partition U . A fuzzy partition

describes how much each grey level belongs to each of

the available clusters. This partition has several stipulations.

First, it is a two-dimensional array of real-values; the number

of rows are equal to the number of clusters c and the number

of columns are equal to the number of grey-levels of the

problem q (i.e. |U | = c×q). The values in this fuzzy partition

convey the membership of each grey-level xi to each cluster

j denoted as µji. Notice that we must obey a rule of fuzzy set

membership here and ensure that the sum of the memberships

for each grey-level must be normalized to 1.0 over all clusters

(
∑c

j µji = 1.0); that is, we expect that no element may

contribute more than one whole unit of membership in total

over all clusters (nor less than one whole unit).

These three mathematical objects are all that we would

need to discuss FCM. Let us complete our discussion of

FCM before proceeding onto the final object that is only

needed for HS.

FCM is a method that attempts to create partitions that

will minimize the condition in (1).

Jm =

c
∑

j=1

n
∑

i=1

µm
ij ||xi − vj ||

2 (1)

The value m ∈ [1.0, +∞) is arbitrarily set by the user.

We set it to 2.0 in accordance with the original study.

The notation || • || indicates the inner product (Euclidean

distance) between xi and vj . Note that this degenerates to

the absolute difference of the two values because our clusters

and elements to cluster are in greyscale (single dimension

real numbers as opposed to vectors with more than one

dimension).

In order to calculate the fuzzy partition from the problem

and the tuple of centroids, equation 2 is used.

µij =

(

c
∑

k=1

(

||xi − vj ||

||xi − vk||

)2/(m−1)
)

−1

(2)

Note again that the inner products degenerate into the

absolute difference for this particular task.

In order to calculate the centroids from the problem and

the fuzzy partition, equation 3 is used.

vj =

∑n
i=1 µm

ij xi
∑n

i=1 µm
ij

(3)

The FCM algorithm is essentially the repeated and alter-

nating application of this pair of equations (2) (3). To start the

algorithm, one needs an estimation of the initial clusters; and

to end the algorithm, one needs a definition of convergence.

Convergence is defined as ||vnew − vold|| < ǫ where

this inner product is the amount of change experienced

between clusters given a present and previous iteration of

the algorithm. We have set ǫ = 0.001 in accordance to the

original study.

Continuing on with our discussion of mathematical ob-

jects, we need only one more object in order to discuss

the HS algorithm since all of the other objects needed are

already defined and shared with FCM. The final object is the

Harmony Memory which is just an array of fuzzy partitions.

Each of the fuzzy partitions therein have the same number of

clusters and the same number of grey levels as one another.

III. HARMONY FUZZY SEARCH ALGORITHM

We will describe here a very focused, implementation-

oriented version of Harmony Search as it applies to the

grey-level thresholding problem. HS is a soft computing

technique that resembles genetic algorithm (GA). HS has two

operations; Improvise a New Harmony, Fitness Evaluation.

To start improvisation, a new blank fuzzy partition is

generated. This new fuzzy partition is not part of the harmony

memory. This new partition has the same dimensions as those

partitions found in the harmony memory – the number of

clusters times the number of grey-levels. To improvise a

new harmony, each position of the new harmony memory

is traversed. We index these positions given a cluster index

and a grey-level index. A random decision is made for each

position to either include an existing value from a random

member of the harmony memory from the same index or

to include a new randomly generated value. The probability

that we will use an existing element is given by the Har-

mony Memory Consideration Rate (HMCR); the probability

that we include a new random value is the complement

(HMCR−1). Now that each of the elements of this new fuzzy

partition is filled, we iterate over its elements once more. This

time, each element may undergo a pitch adjustment given

a random decision. This depends on the Pitch Adjustment



Rate (PAR) value which states the probability of such an

adjustment. When an adjustment occurs, the value is tuned

given a bandwidth (bw) as in µij + bw × uniform(−1, 1)
where uniform returns a uniform random value.

Now that the new fuzzy partition is complete, a fitness

function is used to decide how well it serves as a solution

to the problem. In this application, some function which

describes the clustering or segmentation effort is used. Each

fuzzy partition of the harmony memory is also scored. If the

new fuzzy partition is better than the worst fuzzy partition

in the harmony memory (given the fitness function), then the

new fuzzy partition replaces the worst partition.

This process is repeated until the number of allowed itera-

tions (NI) is exhausted or some level of fitness is achieved for

the best fuzzy partition in the harmony memory. This best

scoring partition becomes the solution to the segmentation

effort.

In creating the new partition, two stipulations arise. It

should be noted that in generating random values, that

the result must be in the range [0.0, 1.0]. Note also that

normalization must occur at least before fitness is checked

obeying the rule
∑c

j µji = 1.0 as previous.

To augment the HS algorithm described above into the

HFISA algorithm, the following change is made. After the

new fuzzy partition is created, one round of FCM is applied

on it. That is, the centroids of the new fuzzy partition are

calculated, then the values of the new partition are modified

given those centroids. The new partition then carries on in

as before and undergoes fitness testing.

In total, HS (HFISA) requires four parameters. They are

the harmony consideration rate (HMCR = 0.98), pitch

adjustment rate (PAR = 0.01), bandwidth (bw = 0.02), and

total allowed number of iterations (NI = originally 5000,

we use 250). The few parameters is one of the reasons the

original authors chose this algorithm.

The fitness function used is the Xie-Beni (XB) index [15]

as per the original work. The XB index is shown in 4.

XB =

∑c
j=1

∑q
i=1 µ2

jihi||xi − vj ||
2

n × minj,k||vj − vk||2
(4)

This objective function is to be minimized. The factor

minj,k||vj − vk|| returns the smallest inner product having

considered each pair of centroids (all pairs of inner products

are calculated, the smallest of these are returned).

IV. CLUSTERING VALIDITY SCORES

In order to evaluate the results, the original authors chose

the quantities Partition Coefficient (PC), Partition Entropy

(PE) [3], XB [15] and (PBMF) [9].

V. RESULTS

The experiments run are paired between FCM and HFISA.

These experiments are of a head-to-head design given the

intention to show which of the two methods performs better.

Figure 1 is a photo of a team member’s cat with the

application of the FCM grey-level segmentation technique as

well as the HFISA technique. This is a representative result

of these segmentation efforts; there is nearly no visually

identifiable difference in quality.

Original FCM HFISA

Fig. 1. A photo of a team member’s cat experiencing segmentation.

Figure 2 is a collection of the original six images used

in the image segmentation task. These have been reduced

in size and turned to grey-scale. Notice that each of these

images has a different distribution of grey-levels.

teapot ball molecule

shapes Mumbai MRI brain

Fig. 2. The original six test images.

In repeating the experiment performed by the original

authors, we used the six images included in the original

paper and performed the segmenting task on each. The

original authors performed thirty rounds of each FCM and

HFISA. We performed ten rounds of each. The original

authors varied the number of clusters used, whereas we

kept all experiments to four clusters. Finally, the original

authors performed 5000 training cycles of HFISA whereas

we performed 250. These adjustments were made due to time

constraints. All remaining parameters are as noted above.

Table I shows the average and standard deviation of the

four scores obtained over the duration of the experiment.

The results in the original paper concluded that HFISA

was far superior to fuzzy c-means. The numerical results

seen here seem to indicate an agreement with the original

paper. In both PC and PE, HFISA is better than FCM in

five of the six cases where the exception, molecule is a tie.

In XB, HFISA performed better on three of the six images,

tied again in the image molecule and fared worse on the

remaining two. In PBMF, HFISA fared better in four of six

cases.



TABLE I
THE PERFORMANCE OF EACH METHOD GIVEN AS A (AVERAGE±STANDARD DEVIATION). SCORING FUNCTIONS ARE ANNOTATED WITH A

SUPERSCRIPT (+) TO INDICATE THAT A HIGHER SCORE INDICATES BETTER PERFORMANCE AND A (−) TO INDICATE THAT A LOWER SCORE IS BETTER.

Image Name Algorithm PC+ PE− XB− PBMF+

teapot HFISA 0.739 ± 0.015 0.503 ± 0.031 0.06 ± 0.006 1208.759 ± 351.924

FCM 0.73 ± 0.0 0.526 ± 0.0 0.076 ± 0.0 986.911 ± 0.054

ball HFISA 0.768 ± 0.003 0.444 ± 0.003 0.031 ± 0.001 2354.932 ± 19.624

FCM 0.758 ± 0.0 0.46 ± 0.0 0.035 ± 0.0 2319.534 ± 0.003

molecule HFISA 0.772 ± 0.0 0.44 ± 0.0 0.009 ± 0.0 3490.461 ± 3.789

FCM 0.772 ± 0.0 0.44 ± 0.0 0.009 ± 0.0 3507.429 ± 0.01

shapes HFISA 0.76 ± 0.003 0.462 ± 0.006 0.062 ± 0.023 3108.986 ± 299.924

FCM 0.757 ± 0.0 0.464 ± 0.0 0.03 ± 0.0 3544.439 ± 0.01

Mumbai HFISA 0.724 ± 0.027 0.527 ± 0.051 0.091 ± 0.021 1583.443 ± 510.513

FCM 0.664 ± 0.0 0.644 ± 0.0 0.145 ± 0.0 547.111 ± 0.004

MRI brain HFISA 0.703 ± 0.012 0.567 ± 0.022 0.067 ± 0.032 672.595 ± 242.711

FCM 0.692 ± 0.0 0.58 ± 0.0 0.056 ± 0.0 649.609 ± 0.001

The amount of improvement gained from HFISA accord-

ing to these numbers varies widely, with the amount of

improvement proportional to the model instability given by

the standard deviation. We say that a model with greater

standard deviation is less stable as we are less certain about

the precise value of the next score that we obtain from it.

FCM on the other hand is remarkably stable and even under

a random selection of initial clusters does not have a single

standard deviation with a value in the tenth’s magnitude.

It should be noted that the value PBMF is in the correct

magnitude as compared with the original paper (we estimate

the value of E1 = 5000.0 given said magnitude – E1 was

an unpublished parameter needed to calculate PBMF).

The model stability result is in stark opposition to that

found of the original work. In it, the standard deviations

of HFISA are zero for PC, PE and XB while the standard

deviation of FCM varied in [0,1] for PC, PE and in [0,65]

in XB. The stability for PBMF however was comparable.

VI. CONCLUSIONS AND DISCUSSION

The HFISA technique has been repeated and tested. While

the visual quality of the segmented images are not vastly

dissimilar, the numerical difference given the different cluster

scores indicates that a detectable difference exists. In the

original experiments, the authors additionally found that

HFISA was a more stable model as well, able to reliably

achieve the same values from trial to trial. We did not find

this to be the case, and found that FCM was remarkably

stable. In fact, in the preliminary work needed to establish

some of the unknown parameters of the original work, we

discovered that as long as the original centroids of the

FCM are unique, that the FCM would tend to find the

same solution within one hundred iterations for the same

data (within a hundredth’s precision of the XB score). The

sub-optimal local optimum was simply not encountered in

our implementation of FCM, whereas it was a major point

in the original paper. Finally, the HFISA algorithm offers

inspiration for future works that may require the strengths of

both a global and local search heuristic.
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