NEURAL GRAMMAR NETWORKS

Eddie Y.T. Ma

Department of Biology University of Waterloo Waterloo, Ontario, Canada e3ma@uwaterloo.ca

Stefan C. Kremer

Department of Computing and Information Science University of Guelph Guelph, Ontario, Canada skremer@uoguelph.ca

OVERVIEW

Background
 Quantitative Structure-Activity Relationship (QSAR)
 Computing Background
 The Neural Grammar Network
 Performance

QSAR

Predicting a quantity of biological action (range) for a suite of molecules (domain) Example biological actions: Toxicity, Mutagenicity, Binding affinity.

qsar() = 92.1

QSAR - Why?

Inexpensive way to prescreen molecules before expensive biomedical assays Better QSAR methods are constantly sought to improve performance and reduce costs

qsar(~) = 92.1

QSAR models usually consist of two parts

Input Descriptors (real-value vectors, expert)
 Encodes physical properties, each molecule
 Learning device (Ld)

Encode to a Descriptor (LOSSY!)

Ld(< 810, 3.2, 6, 9.93 >) = 92.1

QSAR – our model, an experiment Cheminformatics strings used instead of descriptors. **Encoded to SMILES** $f_{2}("CC(C)C=CO") = 92.1$

6

Example SMILES and InChI (1of2)

1-Methoxy-4-(1-propenyl)benzene

н

SMILES:

 $C (=C/C) \land clccc (ccl) OC$

InChI:

InChI=1/C10H120/c1-3-4-9-5-7-10(11-2)8-6-9/h3-8H,1-2H3/b4-3+

Example SMILES and InChI (2of2)

1,3-Diphenyltetramethyldisiloxane

SMILES:

O([Si@@](clcccccl)(C)C)[Si@@](clcccccl)(C)C InChI:

InChI=1/C16H22OSi2/c1-18(2,15-11-7-5-8-12-15)17-19(3,4)16-13-9-6-10-14-16/h5-14H,1-4H3

What form should our model take...

A device that can mine the formal syntax of SMILES and InChI as input

Concrete formal language example

``1+3•2÷0'' ✓ Sy
``1-2-3+5÷5'' ✓
``3'' ✓
``3•3''
``8÷1''
``0•0+0''

- Syntax features
 - Tokens
 - Structure
 - Operator precedence
 - Nested statements

The matching formal grammar

Expr -> OpAdd
OpAdd -> OpAdd SymPlus OpMult | OpMult
SymPlus -> `+' | '-'
OpMult -> OpMult SymTimes Digit | Digit
SymTimes -> `*' | '/'
Digit -> `0' ... `9'

A parse tree is statement structure

Pieces of the grammar correspond to functional parts.

Our model maps neural layers to the parse tree.

Why Neural Networks?

ARTIFICIAL NEURAL NETWORKS

 Universal function approximators
 Input (domain) and output (range) must be expressed as real-value vectors

ann(< 0.8, 0.2, 0.55, 0.72 >) = < 0.24, 0.67 >

And Finally...

The NEURAL GRAMMAR NETWORK

 Use formal string structure as topology of neural network

Assemble a custom NGN for each example string by snapping together the reusable components

Use neural networks' learning algorithm and general function approximation ability

A SMILES-Neural Grammar Network

SMILES isopentenol example "CC(C)C=CO"

Structured Shared Network Components

Emphasis: Parts reused between strings--Training, Prediction functions accomplished!

Experiments and Results

Experimental design
 Results for QSAR studies

PERFORMANCE: classification and regression

Classification (a.k.a. "Matching to a Category")
 Learn and predict what objects fall into what category
 In QSAR, usually binary
 Regression (a.k.a. "Fitting onto a Curve")
 Learn and predict the mapping of objects onto a scalar range
 In QSAR, usually log-normalized scale

PERFORMANCE: classification and regression

Splitting datasets

Leave-20%-out cross validation design

Replicate previous designed test sets

Internal and External Validity!

PERFORMANCE: classification datasets

Dataset	Dataset Full Name	Size	N^+	N^-	Reference
BZR	Benzodiazepine Receptor	405	230	175	Sutherland et al. (2003)
Cox2	Cyclooxygenase 2	467	273	194	Sutherland et al. (2003)
					Kauffman and Jurs (2001)
DHFR	Dihydrofolate Reductase	756	302	454	Sutherland et al. (2003)

Best work was researched and used as a point of comparison

PERFORMANCE: classification evaluation

$$\begin{array}{ll} \mbox{Accuracy} & Q = \frac{TP + TN}{TP + TN + FP + FN} \\ \mbox{Sensitivity} & \mbox{SE} = \frac{TP}{TP + FN} \\ \mbox{Specificity} & \mbox{SP} = \frac{TN}{TN + FP} \end{array}$$

PERFORMANCE: regression datasets

Dataset	Dataset Full Name	Size	Reference
ACE	Angiotensin Converting Enzyme	114	Sutherland et al. (2004)
			Depriest et al. (1993)
Cox2	Cyclooxygenase-2	282	Sutherland et al. (2004)
Therm	Thermolysin	76	Sutherland et al. (2004)
			Depriest et al. (1993)
\mathbf{Thr}	Thrombin	88	Sutherland et al. (2004)
			Bohm et al. (1999)
AChE	Acetylcholinesterase	111	Sutherland et al. (2004)
GPB	Glycogen Phosphorylase B	66	Sutherland et al. (2004)
			Gohlke and Klebe (2002)
BZR	Benzodiazepine Receptor	163	Sutherland et al. (2004)
DHFR	Dihydrofolate Reductase	397	Sutherland et al. (2004)

A range of small to medium datasets, n = [66, 397].

PERFORMANCE: regression evaluation

PERFORMANCE: classification results

State of the art performance on 3 experiments
 DHFR designed test set

 Q_{InChI-NGN} = 73.2% vs. Q_{SIMCA} = 75.5%

 DHFR cross validation

 Q_{InChI-NGN} = 74.8% vs. Q_{SFGA} = 64.5%

 BZR cross validation

 Q_{InChI-NGN} = 69.9% vs. Q_{SIMCA} = 71.5%

SIMCA, SFGA are models described by Sutherland et al.

PERFORMANCE:	Design	Method	Q(%)	SE(%)	SP(%)
elassification	Leave-20%-Out	SIMCA	63.5±9.5	57±10	70±9
Classification		RP	61 ± 12	57 ± 12	65±12
results		SFGA	64.5 ± 10.5	65 ± 11.0	64 ± 10.0
		InChI-NGN	74.8 ± 1.63	70.3 ± 2.44	77.5 ± 1.72
	40% Test Set	SIMCA	75.5	74	71
		RP	65	57	73
		SFGA	68.5	71	66
		InChI-NGN	73.2	73.1	100.0
	Design	Method	Q(%)	SE(%)	SP(%)
	Leave-20%-Out	SIMCA	71.5 ± 11.0	73 ± 10	70 ± 12
		RP	65.5 ± 12	68 ± 12	65±12
		SFGA	68.5 ± 12	69±11	68±13
		InChI-NGN	69.9±1.98	73.4 ± 1.87	65.3±2.29
	40% Test Set SIMC		72	68	76
		RP SFGA		64	74
B7D				70	81
		InChI-NGN	63.2	62.1	64.6
	Design	Method	Q(%)	SE(%)	SP(%)
	Leave-20%-Out	SIMCA	78±9	79±9	77±9
		RP	69.5±12	72 ± 12	67±12
		SFGA	74±9.5	76±9	72 ± 10
		InChI-NGN	72.2 ± 1.36	74.4 ± 1.01	68.7±2.45
	40% Test Set	SIMCA	71	75	67
		RP	71	79	63
		SFGA	73.5	75	72
		InChI-NGN	65.1	62.5	68.4

PERFORMANCE: regression results

Outperforms on six datasets GPB, ACE, AChE, Cox2, Thr and DHFR Performance variance is high however

Data set	SMILES-NGN	InChI-NGN	CoMFA	HQSAR	MK
GPB	0.79 ± 0.23	0.48 ± 2.90	0.42	0.58	_
ACE	0.74 ± 0.46	0.78 ± 0.31	0.49	0.30	0.58
AChE	0.68 ± 0.80	0.60 ± 0.78	0.47	0.37	0.50
Cox2	0.56 ± 1.33	0.37 ± 4.28	0.29	0.27	_
Therm	0.47 ± 2.72	0.52 ± 1.59	0.54	0.53	_
BZR	-0.29 ± 17.30	0.11 ± 8.74	0.00	0.17	0.36†
Thr	_	0.70 ± 0.72	0.63	-0.25	_
DHFR	_	0.66±0.94	0.59	0.63	0.65†

Benefits

No expert knowledge is needed in lossy descriptor selection

Fully represents a traversal of a molecule

Leverages developed freely accessible languages (SMILES, InChI)

CONCLUSION and future

The NGN has been presented for formal string classification and regression
 An NGN system has been applied to QSAR
 State of the art classification performance
 Superior regression performance (although standard deviation is high)
 This from a prototype NGN system!

CONCLUSION and future

Should be tried in more QSAR problems
New problems with formal string domain and new grammars
e.g. Image Processing
Other advanced training and recurrent data treatment possible!

CC(C)C=CO

InChI=1S/C5H100/c1-5(2)3-4-6/h3-6H,1-2H3/b4-3+