Roadmap

v1.3 Codename: Monkeys in a Barrel

Structural Analysis Method

Best Fit Solids Approach

Breaking apart TIM barrels

More obvious ones

Breaking apart TIM barrels

Less obvious ones

Doxey's hint: Parse SSEs

Parse: To derive meaning from sequence SSE: Secondary Structural Element

- Our operating definition of a SSE
 - A single subsequence or substructure that is repeated in a single translation unit
 - A unit foil in n-foils
- TIM Barrel SSE = $(\beta-a)$
- Trefoil SSE = $(\beta \beta \beta o \beta)$
- i.e. Parse the calculated secondary structure and break apart each SSE.

Problem with Parsing

TIM barrel SSEs aren't always regular

>1GV0_A >1GON_A 1; 8; 8; Coil; _____; 1; 3; 3; Coil; ___; 9; 36; 28; Beta; EEE _ EEE _ EEE _ E _ E: 4; 22; 19; Beta; EEE___EEE___EEEEEE: 37; 38; 2; Coil; __; 23; 26; 4; Coil; ____; 39; 47; 9; Alpha; HHHHHHHH; 27; 37; 11; Alpha; HHHHHHHHHH; 48; 52; 5; Coil; ____; 38; 43; 6; Coil; ____; 53; 73; 21; Beta; EEEEEEEE ______E: 44; 48; 5; Beta; EEEEE; 49; 71; 23; Alpha; HHH_____HHHHHHHHHHHHH; 74; 76; 3; Coil; ___; 77; 92; 16; Alpha; HHHHHHHHHHHHHHH; 72; 76; 5; Coil; ____; 93; 96; 4; Coil; ____; 77; 83; 7; Beta; EEEE__E; 97; 102; 6; Beta; EEEEEE; 84; 86; 3; Alpha; HHH; 103; 109; 7; Coil; _____; 87; 89; 3; Coil; ___; 110; 116; 7; Alpha; HHH_HHH; 90; 90; 1; Beta; E; 117; 119; 3; Coil; ___; 91; 93; 3; Coil; ___; 120; 150; 31; Beta; EE___ ____EEEEE_____EEEE____EE: 94; 107; 14; Alpha; HHHHHHHHHHHHH; 151; 152; 2; Coil; __; 108; 111; 4; Coil; ____; 153; 172; 20; Alpha; HHHHHHHHHHHHHHHHHHHHH 112; 116; 5; Beta; EEEEE; 173; 176; 4; Coil; ____; 117; 133; 17; Alpha; HHH_HHHHHHHHHHH; 177; 182; 6; Beta; EEEEEE; 134; 136; 3; Coil; ___; 183; 186; 4; Coil; ____; 137; 144; 8; Beta; EEEEEEEE; 145; 150; 6; Coil; ____; 230; 243; 14; Beta; EEEEE ____E_E; 151; 163; 13; Alpha; НННННННННН; 244; 248; 5; Coil; ____; 164; 167; 4; Coil; ____; 249; 262; 14; Alpha; HHHHHHHHHHHH; 168; 173; 6; Beta; EEEEEE; 263; 266; 4; Coil; ____; 174; 177; 4; Coil; ____; 267; 277; 11; Beta; EEEEE E E; 178; 194; 17; Alpha; ННННННННННННН 278; 282; 5; Coil; ____; 195; 200; 6; Coil; ____; 283; 290; 8; Alpha; HHHHHHH; 201; 204; 4; Beta; EEEE; 291; 295; 5; Coil; ____; 205; 209; 5; Coil; ____; 296; 300; 5; Beta; EEEEE; 210; 219; 10; Alpha; HHHHH_HHHH; 301; 304; 4; Coil; ____; 220; 222; 3; Coil; ___; 223; 238; 16; Beta; EEE_E____E; 305; 313; 9; Alpha; HHHHHHHH; 314; 318; 5; Coil; ____; 239; 250; 12; Alpha; HHHHHHHHHH; 319; 322; 4; Beta; EEEE; 251; 252; 2; Coil; __; 323; 323; 1; Coil; _; 324; 349; 26; Alpha; HHHHH___HHHHHHH____HHH; 350; 364; 15; Coil; _____

PDBs Contain More Data!

How do we dope the parse with a 3D barrel fit?

Algorithm:

- Select all residues belonging to beta sheets from a PDB
- Find the sheets that belong to the best fit barrel
 - For each combination of sheets:
 - Perform simplex algorithm to fit sheets to cylinder
 - Best fit cylinder has the smallest residuals
- Expand selection to discover residues belonging to helices

Advantages and Drawbacks

- Advantage:
 - Method can be extended to trefoil and other objects that can be projected to two-space
 - An extension exists to extend this to things that can't be projected – like sandwiches
- Drawback:
 - Unable to cope with 1YBE, our broken friend.

Presentation Midpoint

Any questions before moving onto Foil-Sensitive MSA?

- Structure Progress
 - Learned the math needed
 - Now need to code this
 - Now need to adapt PDB data to fit the algorithm

- Sequence Progress
 - Deployed code to create guide tree
 - Deployed code to create profiles
 - Deployed nearest
 neighbour code
 - Now need to adapt Needleman-Wunsch algorithm for our partial profiles

End of Structure Half of Presentation