
Regular Expressions &
List Comprehension

The last of the Python Crash Course lectures
http://eddiema.ca/py

Eddie Ma

1

1

http://eddiema.ca/py
http://eddiema.ca/py

Regular Expressions?

• A regular expression is a string literal.

• “Yay!”

• We use them as patterns to match other
strings.

2

2

String Searching

• The pattern “oak” will match the
following strings: “I eat oak”, “oakville”,
“oak tree”.

• When a pattern matches, a regular
expression match object is returned.

• Internally called a “_sre.SRE_Match” object.

• The None object is returned otherwise.

3

3

literally searching

4

>>> import re

>>> patternString = “oak”

>>> patternObject = re.compile(patternString)

>>> patternObject.search(“oakville”)

<_sre.SRE_Match object at 0x362c98>

>>> print patternObject.search(“cows”)

None

4

More meta, less literal

• We can specify patterns with
metacharacters that match degenerately

• The pattern “[abc]” matches these strings
“a”, “b”, “c”

• The ‘[’ and ‘]’ characters are used to specify
a regular expression class.

• Use “-” specifies a range in a class: “[a-c]”.

5

5

matching with class

6

>>> import re

>>> pattern = “[0-9]”

>>> sentence = “Ten is 10 in base ten.”

>>> matchObject = re.compile(pattern).search(sentence)

>>> print matchObject

<_sre.SRE_Match object at 0x362d40>

6

More Metacharacters

• We include these characters in a pattern string to
mean different things.

• The period “.” matches any single character once.

• The wildcard “?” matches zero or one of an item.

• The Kleene plus “+” matches one or more items.

• The Kleene star “*” matches zero or more items.

• The parentheses “(“ and “)” encloses a literal.

7

7

Metachar Examples

8

Characters Pattern Matching
String

Another
Match

Non-
Matching

. eleph.nt elephznt eleph.nt elephoont

? neighbou?r neighbour neighbor neighbouur

+ quantu+m quantuuuum quantum quantm

* joh*n johhhhn jon jn

(,), * thes(is)* thesisisisisis thes theses

[,], + ID[0-9]+ ID0329 ID427 IDten

8

Extracting

• Now that we know how to get a match
object, let’s crack one open to extract
useful information.

9

9

The first match

10

>>> import re

>>> pattern = “(their|there|they’re)”

>>> string = “they’re cat and there dog are over their.”

>>> firstMatch = re.compile(pattern).search(string)

>>> print firstMatch.start()

0

>>> print firstMatch.end()

7

>>> print firstMatch.group()

they’re

10

Extracting all matches

11

>>> import re

>>> pattern = “(their|there|they’re)”

>>> string = “they’re cat and there dog are over their.”

>>> matches = re.finditer(pattern, string)

>>> for m in matches:

... print m.start(), m.end(), m.group()

0 7 they’re

16 21 there

35 40 their

11

More on re.finditer()

• re.finditer() actually returns an iterable
object -- an object that you can use a for
loop on, but one that isn’t really a
sequence.

• That means it can’t be indexed :(

• A related function is re.findall() which
returns an actual list of all the matching
strings (without start() and end() indices).

12

12

More metachars
• The pipe “|” enclosed inside “(” and “)” separates

matching options.

• The caret as the first item “^” inside a class means
“nothing in this class” (escape it with a backslash “\”).

• The caret “^” in a pattern matches start of the string.

• The dollar-sign “$” in a matches the end.

• The “{” and “}” enclose an integer for how many times
to match an item.

• better explained in an example...

13

13

Metachar examples...

14

Characters Pattern Matching
String

Another
Match

Non-
Matching

(, |,) (Eddie|John) Eddie will. John will. Fred will.

[, ^,] gr[^ae]y groy grpy grey

^ ^Pop Popsicle Popstand A Pop

$ halves$ two halves eight halves 2 halves of 3

{, } a{4} aaaa whaaaat caat

[,], {, } th[ae]{3}n thaaen theeen than

(,), {, } th(ou|aw){2} thouaw thawou thaw

14

...match()

• re.compile(“^” + pattern).search(string) is
the same as

• re.compile(pattern).match(string)

• i.e. match only looks at the start of the
string

• returns an _sre.SRE_Match object

15

15

re.split()

• re.split(pattern, string, count?)

• breaks a string apart at the pattern

• similar to string.split(pattern)

• count is an optional argument indicating
the maximum number of times to break

• returns a list of strings

16

16

re.sub()

• re.sub(pattern, replacement, original, count?)

• Substitute a replacement at each
pattern in the original string.

• Count is optional: the number of
substitutions going left to right before
stopping.

• Returns a modified string.

17

17

Shorthands for classes

18

Pattern
Equivalent

Class What?

\d [0-9] digits

\D [^0-9] not digits

\s [\t\r\n\f\v] white space

\S [^ \t\r\n\f\v] not space

\w [a-zA-Z0-9_] alphanumeric

\W [^a-zA-Z0-9_] not alphanum

18

19

Low Budget Halftime Show...

:)

19

20

Low Budget Halftime Show...

:D

20

21

Low Budget Halftime Show...

:O

21

22

Low Budget Halftime Show...

XD

22

23

Low Budget Halftime Show...

List Comprehension!

23

List Comprehension

• List comprehension is a suite of syntactic
sugar useful for dealing with sequences or
Python lists.

• With this, we can perform the filter, map
and fold operations that are familiar to
functional programming languages.

24

24

Trivial Example

• The list [0, 1, 2, 3, 4, 5] can be created with
the expression:

• “[x for x in xrange(6)]”

• Where xrange is a function that
generates the integers from 0 until
before 6.

25

25

xrange()

• The xrange() function is great for this kind of
thing.

• xrange(start, before, increment)

• Start is the integer to start on (inclusive)

• Before is the integer to stop before
(exclusive)

• Increment is the size of the step between
integers generated

26

26

General Syntax
• [resultant for element in original if condition]

• Where resultant is an element that enters the
final list

• Element is a raw item from the original list

• Original is the original list

• Condition is some optional constraints for what
to consider from the original list

• Naturally a filter!

27

27

Simple filter examples...

28

>>> from math import pi

>>> from math import e
>>> constants = [22, 13, 3.1, 3.53, 2, 1, 3345, 8, e, 0, 56.13, 3231, 1, pi, -1]
>>> [Eye for Eye in constants if Eye % 2 == 0]

[22, 2, 8, 0]

>>> [Jay for Jay in constants if Jay % 1 == 0]
[22, 13, 2, 1, 3345, 8, 0, 3231, 1, -1]
>>> [Kay for Kay in constants if Kay < 30 if Kay > 20]

[22]

28

Simple Map Example...

29

>>> from math import pi

>>> from math import e
>>> constants = [22, 13, 3.1, 3.53, 2, 1, 3345, 8, e, 0, 56.13, 3231, 1, pi, -1]
>>> rooted = [Emm ** (1.0/2.0) for Emm in constants if Emm > 0]

>>> print rooted

[4.6904157598234297, 3.6055512754639891, ...
>>> squished = [log(Enn) for Enn in constants if Enn > 0]
>>> print squished

[3.0910424533583161, 2.5649493574615367, ...

29

Operating on Two Lists

• Pairwise means that each element in each
list are paired together so that their indices
are the same

• Crosswise means that each element in one
list is paired with every element in the
other list

30

30

Continuing...

31

>>> product = [Ooo * Pee for Ooo, Pee in zip(rooted, squished)]

>>> print len(product)
13
>>> combo = [Ooo + Pee for Ooo in rooted for Pee in squished]

>>> print len(combo)

169

31

Functions are objects
• Before going to folding sequences--

• Everything in Python is an object.

• Functions are objects too and can be passed like variables--

• You simply drop the parentheses!

• Example:

• blah = len([1, 2, 3])

• “blah” gets the value 3 for the length of the list

• blah = len

• blah([1, 2, 3])

• “blah” becomes a reference for the length function

32

32

Folding Lists

• In Python, the reduce function is used.

33

33

reduce() example...

34

>>> morbid = ["The ", "cat ", "ate ", "a ", "mouse."]
>>> def catcat(x, y):
... return x + y
reduce(catcat, morbid)
The cat ate a mouse.

34

filter(), map()

• Along with list comprehension, the
functions filter() and map() also exist.

• semantics:

• filter(function, sequence)

• map(functions, sequence, ...)

• map takes additional sequences and
operates on them pairwise-like.

35

35

You have just been introduced to Python!
Go home!

Halftime redux...

:) :D :O XD

36

