#### An evolutionary computation attack on one-round TEA

Eddie YT Ma, MSc Charlie Obimbo, PhD

University of Guelph, Ontario, Canada for CAS 2011, Chicago

# Agenda

#### Problem Overview

- Tiny Encryption Algorithm
- Evolutionary Computation
- Experimental Design
- Results
- Conclusions

# Problem Overview

 In this project we attack <u>one-round</u> TEA with evolutionary computation.

# Problem Overview



TEA is an elegant, light weight Feistel block cipher. (Wheeler & Needham, 1994)



We use an evolutionary computation algorithm to derive the encryption key.

# Problem Overview

• This is called a *known-plaintext* attack.

# Agenda

#### Problem Overview

- Tiny Encryption Algorithm <-</li>
- Evolutionary Computation
- Experimental Design
- Results
- Conclusions

• TEA is a Feistel block cipher.

- <u>rounds</u> of operation on the <u>bits</u> of plaintext
- operations are <u>substitutions</u>, <u>permutations</u>
- want: unique sequence of operations for each key



The key is 128-bits long (4 × 32-bit words) Text is operated in blocks of 64-bits (2 × 32-bit words)



delta is a constant sum is as a key scheduler



round one



round two

...





round one



round 32

...





# Agenda

#### Problem Overview

- Tiny Encryption Algorithm
- Evolutionary Computation <-</li>
- Experimental Design
- Results
- Conclusions

# EC Evolutionary Computation

a whole family of optimization techniques
all somewhat inspired by biological evolution
we combine two techniques in this project

genetic algorithm and harmony search

## GA Genetic Algorithm

search space represented by <u>chromosomes</u>
optimize a <u>population</u> of chromosomes
called *evolution*

• Let's discuss this in context of this project.

(Fraser, 1957)

# GA Genetic Algorithm • A Population



A population of seventy chromosomes (keys).

## GA Genetic Algorithm

operations performed on population

get better and better keys at each generation

## GA Genetic Algorithm • Point Mutation



Operation 1: We define a point mutation as a bit-flip. (2% uniform pseudorandom probability for each bit) 23

# Genetic Algorithm • Crossover



Operation 2: Two parents yield two children in crossover. (pairs of parents are randomly selected)

# GA Genetic Algorithm • Fitness Function

select the fittest keys to continue

- unfit keys removed from population
- want: fitness should improve over time
- our fitness function is a hamming distance

## GA Genetic Algorithm • Fitness Function



Hamming distance calculated for each key's ciphertext against the correct key's ciphertext.

# Harmony Search

#### • Let's discuss this as a modification to GA.

two more operators

Harmony Search is inspired by *musical improvisation* (Geem & Kim, 2001)

# HS Harmony Search • Improvise Harmony



Operation 3: Entire population used to improvise harmony. (contributing parents randomly selected) 28

# Harmony Search • Adjust Pitch



Operation 4: We define adjust pitch as byte or word swaps. (pairs of bytes or words randomly selected within a key) 29

# Agenda

#### Problem Overview.

- Tiny Encryption Algorithm
- Evolutionary Computation
- Experimental Design
- Results
- Conclusions

# Experimental Design

• We will now explain ...

- the arrangement of *operators* in the EC
- the *selection* of chromosomes in the EC
- selection of known plaintexts and keys

# EC Operators & Selection

Operating a population of keys in a generation ...



Each box is a reservoir of 70 keys. After all operations are complete, the best ten from each box are advanced to next generation. 32

#### Let's talk about how we selected plaintexts

# Plaintexts and Keys

- Plaintexts were chosen at random with a pseudorandom uniform number generator.
- Ciphertexts were calculated using one-round TEA.
- 100 plaintext message blocks per trial
- 30 trials per experiment

# Plaintexts and Keys

two experiments run given two keyschemes
 scheme 1: create keys with the words ...
 {0x00000000, 0xFFFFFFF, 0xXXXXXXX}<sup>+</sup>

scheme 2: create keys with the words ...
 {0xFF000000, 0x00FF0000, 0x0000FF00, 0x00000FF}

<sup>†</sup>0xXXXXXXXXX is four random bytes.

# Plaintexts and Keys

• Number of keys in keyscheme 1:

- 3<sup>4</sup> = 81 schemes
- Number of keys in keyscheme 2:
  - 4<sup>4</sup> = 256 schemes
- Every single scheme was committed to 30 trials of randomly generated plaintexts.

# Agenda

#### Problem Overview.

- Tiny Encryption Algorithm
- Evolutionary Computation
- Experimental Design
- Results <del><</del>
- Conclusions

## Results Experiment 1

{0x<u>00000000</u>, 0x<u>FFFFFFF</u>, 0x<u>XXXXXXX</u>}

## Results Experiment 1 - Summary Plots



Proportion of Convergences

- really easy:
  - >2 zeros
- easy:
  - (KO, K1) = 0 or F
  - (K2, K3) = 0 or F

• hard:

• >1 X (random)

# Results

#### Experiment 1 - Number of Convergences

| Word | Occurrences | Affected keys | <i>x</i> / 30 | $\sigma$ |
|------|-------------|---------------|---------------|----------|
| 0    | 1           | 32            | 2.9           | 3.9      |
|      | 2           | 24            | 5.0           | 5.1      |
|      | 3           | 8             | 13.1          | 1.5      |
|      | 4           | 1             | 24.0          | _        |
| F    | 1           | 32            | 2.8           | 4.4      |
|      | 2           | 24            | 5.6           | 5.0      |
|      | 3           | 8             | 9.0           | 3.3      |
|      | 4           | 1             | 14.0          | _        |
| X    | 1           | 32            | 5.1           | 4.0      |
|      | 2           | 24            | 0.9           | 1.3      |
|      | 3           | 8             | 0.0           | 0.0      |
|      | 4           | 1             | 0.0           | _        |

Average number of convergences over 30 trials (with standard deviation)

## Results Experiment 1 - Summary Plots



Speed of Convergence

- larger dot is earlier
- cross = no convergence
- same pattern as before

# Results

#### Experiment 1 - Convergence Generation

| Word | Occurrences | Converged trials | $\bar{x}$ generation | $\sigma$ |
|------|-------------|------------------|----------------------|----------|
| 0    | 1           | 92 / 960         | 2069.6               | 1519.1   |
|      | 2           | 121 / 720        | 2192.8               | 1399.7   |
|      | 3           | 105 / 240        | 1699.0               | 1311.8   |
|      | 4           | 24 / 30          | 801.0                | 1112.8   |
| F    | 1           | 89 / 960         | 2118.6               | 1504.9   |
|      | 2           | 135 / 720        | 2220.5               | 1370.9   |
|      | 3           | 72 / 240         | 1506.2               | 1334.5   |
|      | 4           | 14 / 30          | 1216.7               | 1357.5   |
| X    | 1           | 164 / 960        | 2241.4               | 1435.5   |
|      | 2           | 22 / 720         | 2931.8               | 1466.5   |

Average generation of convergence over 30 trials (with standard deviation)

## Results Experiment 1 - Summary Plots



Proportion of Degenerate Keys

- TEA degenerate keys
- each key is part of an equivalent triplet
- (KO, K1) = 0 or F
- (K2, K3) = 0 or F
- large number of random breaks: {(000X), (FXFF), (FFFX), (XXFF)}

## Results Experiment 2

{0xFF000000, 0x00FF0000, 0x0000FF00, 0x00000FF}

# Results

#### Experiment 2 - Number of Convergences

| Arrangement of matching words  | Affected keys | <i>x</i> / 30 | $\sigma$ |
|--------------------------------|---------------|---------------|----------|
| $K0 = K1 \land K2 = K3$        | 16            | 7.0           | 4.4      |
| $K0 = K1 \land K2 \neq K3$     | 48            | 6.9           | 3.7      |
| $K0 \neq K1 \wedge K2 = K3$    | 48            | 6.9           | 4.1      |
| $K0 \neq K1 \land K2 \neq K3$  | 144           | 7.0           | 3.2      |
| $K0 = K2 \wedge K1 = K3$       | 16            | 10.8          | 2.8      |
| $K0 = K2 \wedge K1 \neq K3$    | 48            | 8.3           | 2.8      |
| $K0 \neq K2 \wedge K1 = K3$    | 48            | 8.3           | 3.6      |
| $K0 \neq K2 \wedge K1 \neq K3$ | 144           | 5.7           | 3.2      |
| exactly four matching words    | 4             | 13.0          | 3.4      |
| exactly three matching words   | 48            | 9.8           | 3.2      |
| exactly two matching words     | 180           | 6.5           | 3.1      |
| no matching words              | 24            | 3.5           | 1.7      |

Average number of convergences over 30 trials (with standard deviation)

## Results Experiment 2 - Convergence Generation

| Word                         | Converged trials | $\bar{x}$ generation | $\sigma$ |
|------------------------------|------------------|----------------------|----------|
| exactly four matching words  | 52 / 120         | 1779.7               | 1352.0   |
| exactly three matching words | 471 / 1440       | 2196.9               | 1348.2   |
| exactly two matching words   | 1175 / 5400      | 2408.9               | 1291.0   |
| no matching words            | 85 / 720         | 2776.8               | 1207.8   |

# Average generation of convergence over 30 trials (with standard deviation)

#### Results Experiment 2 - Summary Plots



**Proportion of Degenerate Keys** 

• large degenerate areas

- (KO, K1) = FF00000
- (K2, K3) = FF00000

# Agenda

#### Problem Overview

- Tiny Encryption Algorithm
- Evolutionary Computation
- Experimental Design
- Results
- Conclusions

#### Conclusions Experiment 1 {0x0000000, 0xFFFFFFF, 0xXXXXXX}

more random words implies more resilience

- all-on-bit words more resilient to all-off-bit
- EC method can find equivalent keys

# Conclusions

Experiment 2 {0xFF000000, 0x00FF0000, 0x0000FF00, 0x00000FF}

matched words in (K0, K2) and (K1, K3) easier

more matched words even easier (due to HS)

 equivalent keys easiest to derive for words with {0xFF000000} in (K0, K1) or (K2, K3).

# Conclusions

- EC methods capable of attacking <u>one-round</u>
   Feistel block ciphers.
- HS is particularly good at probing solutions with repetitions.
- Equivalent keys can also be derived.

Thanks for listening! http://eddiema.ca ema@uoguelph.ca

#### Results Experiment 2 - Summary Plots



**Proportion of Convergences** 

• no obvious pattern

#### Results Experiment 2 - Summary Plots



• • • •

• no obvious pattern

#### Speed of Convergence