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Problem Overview

• In	  this	  project	  we	  aAack	  one-‐round	  TEA	  with	  
evolu3onary	  computa3on.
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Problem Overview
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TEA
1-‐round

TEA	  is	  an	  elegant,	  light	  weight	  Feistel	  block	  cipher.
(Wheeler	  &	  Needham,	  1994)

plaintext
encryption key

ciphertext
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TEA
1-‐round

ciphertext

EC
GA+HS

plaintext
encryption key

encryption key

We	  use	  an	  evolu3onary	  computa3on	  algorithm	  
to	  derive	  the	  encryp3on	  key.



Problem Overview

• This	  is	  called	  a	  known-‐plaintext	  aAack.
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TEA
Tiny Encryption Algorithm

• TEA	  is	  a	  Feistel	  block	  cipher.

• rounds	  of	  opera3on	  on	  the	  bits	  of	  plaintext

• opera3ons	  are	  subs3tu3ons,	  permuta3ons

• want:	  unique	  sequence	  of	  opera7ons	  for	  each	  key

8



TEA
Tiny Encryption Algorithm
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TEA
32-‐round

plaintext

encryption key
ciphertextk[0] k[1] k[2] k[3]

m[0] m[1]

c[0] c[1]

The	  key	  is	  128-‐bits	  long	  (4	  ⨯	  32-‐bit	  words)
Text	  is	  operated	  in	  blocks	  of	  64-‐bits	  (2	  ⨯	  32-‐bit	  words)



TEA
Tiny Encryption Algorithm
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delta	  is	  a	  constant
sum	  is	  as	  a	  key	  scheduler
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TEA
Tiny Encryption Algorithm

• We	  use	  one-‐round	  TEA	  for	  this	  project.
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EC
Evolutionary Computation

• a	  whole	  family	  of	  op7miza7on	  techniques

• all	  somewhat	  inspired	  by	  biological	  evolu7on

• we	  combine	  two	  techniques	  in	  this	  project

• gene7c	  algorithm	  and	  harmony	  search
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GA
Genetic Algorithm

• search	  space	  represented	  by	  chromosomes

• op3mize	  a	  popula3on	  of	  chromosomes

• called	  evolu7on

• Let’s	  discuss	  this	  in	  context	  of	  this	  project.

20
(Fraser,	  1957)



GA
Genetic Algorithm • A Population
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k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

A	  popula3on	  of	  seventy	  chromosomes	  (keys).

Key	  1

Key	  2

Key	  3

Key	  70

: : : :



GA
Genetic Algorithm

• opera3ons	  performed	  on	  popula3on

• get	  beAer	  and	  beAer	  keys	  at	  each	  genera3on
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GA
Genetic Algorithm • Point Mutation
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k[0] k[1] k[2] k[3]

PM

k[0] k[1] k[2] k[3]

Opera3on	  1:	  We	  define	  a	  point	  muta3on	  as	  a	  bit-‐flip.
(2%	  uniform	  pseudorandom	  probability	  for	  each	  bit)



GA
Genetic Algorithm • Crossover
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k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

CO

k[0] k[1]

k[0] k[1]

k[2] k[3]

k[2] k[3]

Opera3on	  2:	  Two	  parents	  yield	  two	  children	  in	  crossover.
(pairs	  of	  parents	  are	  randomly	  selected)



GA
Genetic Algorithm • Fitness Function

• select	  the	  fiAest	  keys	  to	  con3nue

• unfit	  keys	  removed	  from	  popula3on

• want:	  fitness	  should	  improve	  over	  3me

• our	  fitness	  func3on	  is	  a	  hamming	  distance
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GA
Genetic Algorithm • Fitness Function
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Key	  1’s	  ciphertext

Key	  2’s	  ciphertext

Key	  3’s	  ciphertext

Correct	  Key’s	  ciphertext “ ” “ ” “ ” “ ”...

“ ” “ ” “ ” “ ”...

“ ” “ ” “” “”...

“ ” “” “”...“ ”

Hamming	  distance	  calculated	  for	  each	  key’s	  ciphertext	  
against	  the	  correct	  key’s	  ciphertext.



HS
Harmony Search

• Let’s	  discuss	  this	  as	  a	  modifica3on	  to	  GA.

• two	  more	  operators

27

Harmony	  Search	  is	  inspired	  by	  musical	  improvisa7on
(Geem	  &	  Kim,	  2001)
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k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

: : : :
k[0] k[1] k[2] k[3]

IH

k[0] k[1] k[2] k[3]

Key	  1

Key	  2

Key	  3

Key	  70

HS Harmony Search • Improvise Harmony

Opera3on	  3:	  En3re	  popula3on	  used	  to	  improvise	  harmony.
(contribu3ng	  parents	  randomly	  selected)



HS
Harmony Search • Adjust Pitch
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k[0] k[1] k[2] k[3]

AP

k[0] k[1] k[2] k[3]

Opera3on	  4:	  We	  define	  adjust	  pitch	  as	  byte	  or	  word	  swaps.
(pairs	  of	  bytes	  or	  words	  randomly	  selected	  within	  a	  key)
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Experimental Design

• We	  will	  now	  explain	  ...

• the	  arrangement	  of	  operators	  in	  the	  EC

• the	  selec7on	  of	  chromosomes	  in	  the	  EC

• selec3on	  of	  known	  plaintexts	  and	  keys
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EC Operators & Selection
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Each	  box	  is	  a	  reservoir	  of	  70	  keys.
Aher	  all	  opera3ons	  are	  complete,	  the	  best	  ten	  from	  each	  box	  

are	  advanced	  to	  next	  genera3on.

Operating a population of keys in a generation ...



• Let’s	  talk	  about	  how	  we	  selected	  plaintexts
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Plaintexts and Keys
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• Plaintexts	  were	  chosen	  at	  random	  with	  a	  
pseudorandom	  uniform	  number	  generator.

• Ciphertexts	  were	  calculated	  using	  one-‐round	  TEA.

• 100	  plaintext	  message	  blocks	  per	  trial

• 30	  trials	  per	  experiment



Plaintexts and Keys
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• two	  experiments	  run	  given	  two	  keyschemes

• scheme	  1:	  create	  keys	  with	  the	  words	  ...

{0x00000000,	  0xFFFFFFFF,	  0xXXXXXXXX}†

• scheme	  2:	  create	  keys	  with	  the	  words	  ...

{0xFF000000,	  0x00FF0000,	  0x0000FF00,	  0x000000FF}

†0xXXXXXXXX	  is	  four	  random	  bytes.



Plaintexts and Keys

• Number	  of	  keys	  in	  keyscheme	  1:

• 34	  =	  81	  schemes

• Number	  of	  keys	  in	  keyscheme	  2:

• 44	  =	  256	  schemes

• Every	  single	  scheme	  was	  commiAed	  to	  30	  
trials	  of	  randomly	  generated	  plaintexts.
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Results
Experiment 1
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{0x00000000,	  0xFFFFFFFF,	  0xXXXXXXXX}



Results
Experiment 1 - Summary Plots

Propor3on	  of	  
Convergences

• really easy:

• >2 zeros

• easy:

• (K0, K1) = 0 or F

• (K2, K3) = 0 or F

• hard:

• >1  X (random)
39



Results
Experiment 1 - Number of Convergences
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6. Results

The relative performance of the present EC strategy in the first experiment is summarized in the three plots in
Figure 3.

Figure 3: The proportion of convergences for each key scheme (Left). The speed of convergence for converged trials (Centre). The proportion
of degenerate keys observed (Right). The radius of each dot is proportional to the value described and all values are normalized to the best value
achieved. A cross indicates that a value is missing because no convergences took place. These plots characterize the relative behaviours of keys
constructed from (0) words that are off-bits, (F) words that are on-bits and (X) words that are pseudorandom. The 32-bit words for each key are
K0, K1, K2, K3 from the first to the last word respectively.

The proportion of convergences observed depends on the number of 0 words, F words, and X but not on the
positions of these words. Table 1 is the number of convergences for counts of each type of word and summarizes the
data in the left plot of Figure 3.

Table 1: The average count of convergences over thirty trials given the occurrences of the words (0), (F), and (X).Occurrences indicates the number
of times a word appears in a key. Affected keys is the number of keys which contain the number of such words (average x̄, standard deviation σ).

Word Occurrences Affected keys x̄ / 30 σ

0

1 32 2.9 3.9
2 24 5.0 5.1
3 8 13.1 1.5
4 1 24.0 –

F

1 32 2.8 4.4
2 24 5.6 5.0
3 8 9.0 3.3
4 1 14.0 –

X

1 32 5.1 4.0
2 24 0.9 1.3
3 8 0.0 0.0
4 1 0.0 –

The highest number of convergences recorded were observed when all four words of the key were set to 0 while no
convergences were observed when three or four words of the key were X. These observations are consistent with our
expectation that higher entropy keys are harder. For keys consisting of 0 and F, convergences increases as the number
of occurrences of those words increase. The standard deviation also drops overall but rises when there are exactly two
occurrences of 0 and F. The word 0 is easier to derive than the word F due to the addition operator used in TEA. The
plot in the centre of Figure 3 is the relative speed of convergence; i.e. 5000 minus the number of generations needed
to converge. These values are in Table 2.

The keys composed of more 0 converge fastest with greater stability (lower σ). As before, trials deriving keys
with F follows next in performance leaving X to last place due to the high entropy of those keys. The right-side
plot in Figure 3 is the relative proportion of degenerate keys discovered. A degenerate key is a key that is equivalent

Average	  number	  of	  convergences	  over	  30	  trials
(with	  standard	  devia3on)



Results
Experiment 1 - Summary Plots

Speed	  of	  
Convergence

• larger dot is earlier

• cross = no convergence

• same pattern as before
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Results
Experiment 1 - Convergence Generation
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Table 2: The generation of convergence for converged trials for keys containing a variable number of 0, F and X words (average x̄, standard
deviation σ). Occurrences indicates the number of such words in a given key, and converged trials indicates the proportion of trials which
successfully derived such a key.

Word Occurrences Converged trials x̄ generation σ

0

1 92 / 960 2069.6 1519.1
2 121 / 720 2192.8 1399.7
3 105 / 240 1699.0 1311.8
4 24 / 30 801.0 1112.8

F

1 89 / 960 2118.6 1504.9
2 135 / 720 2220.5 1370.9
3 72 / 240 1506.2 1334.5
4 14 / 30 1216.7 1357.5

X 1 164 / 960 2241.4 1435.5
2 22 / 720 2931.8 1466.5

to the one that is used to create the ciphertext. In TEA, each key is part of a degenerate triplet. A degenerate key
is discovered when a convergence to that key occurs. Degenerate triplets share all bits with one another with the
exception that the most significant bits in the first two words only, or the last two words only are flipped. The greatest
number of degenerate keys converged was five, found in the all-0 key.

The behaviour of the EC in the second experiment are in Figure 4. Here, four words were used to construct keys
where each word is composed of one byte that is all on, and all remaining bits off.

Figure 4: The proportion of convergences for each key scheme (Left). The speed of convergence for converged trials (Centre). The proportion of
degenerate keys observed (Right). Keys were constructed with words as follows: (0 is 0xFF000000), (1 is 0x00FF0000), (2 is 0x0000FF00), and
(3 is 0x000000FF). The 32-bit words for each key are K0, K1, K2, K3 from the first to last word respectively.

Table 3 shows three cases of convergence behaviour in the left plot of Figure 4. In case 1 when (K0, K1) or (K2,
K3) contain matched or mismatched words, no change in the average number of converged trials per key scheme is
seen. In case 2, when (K0, K2) or (K1, K3) are matched or mismatched, the number of convergences does change.
Two pairs of matched words shows the highest probability of convergence while two pairs of mismatched words
creates difficult keys to derive. Finally in case 3, a higher number of matched words regardless of position produces
easier keys to break.

Table 4 reports generation of convergence in the second experiment corresponding to the centre plot of Figure 4.
The amount of time required to converge increases with fewer matching words within the key. Finally, in the right
plot of Figure 4, two definite stretches of degenerate keys can be seen where (K0, K1) are the same forming a vertical
line and (K2, K3) forming a horizontal. The key composed of only the word 0xFF000000 has the the greatest number
of degenerate keys, nine.

Average	  genera3on	  of	  convergence	  over	  30	  trials
(with	  standard	  devia3on)
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Experiment 1 - Summary Plots

Propor3on	  of	  
Degenerate	  Keys

• TEA degenerate keys

• each key is part of an 
equivalent triplet

• (K0, K1) = 0 or F

• (K2, K3) = 0 or F

• large number of 
random breaks: 
{(000X), (FXFF), 
(FFFX), (XXFF)}
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Results
Experiment 2
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{0xFF000000,	  0x00FF0000,	  0x0000FF00,	  0x000000FF}
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Table 3: The proportion of convergences given three partitions of trials in the second experiment of this work. The first case splits apart trials based
on matches and mismatches of (K0, K1) and (K2, K3). The second case splits trials based on matches of (K0, K2) and (K1, K3). The third case
organizes cases based on the total number of matched words regardless of position. The affected keys indicates the number of key schemes which
fit the constraints of the matching words. Each of the affected key schemes has 30 trials (average x̄, standard deviation σ).

Arrangement of matching words Affected keys x̄ / 30 σ

K0 = K1 ∧ K2 = K3 16 7.0 4.4
K0 = K1 ∧ K2 ! K3 48 6.9 3.7
K0 ! K1 ∧ K2 = K3 48 6.9 4.1
K0 ! K1 ∧ K2 ! K3 144 7.0 3.2
K0 = K2 ∧ K1 = K3 16 10.8 2.8
K0 = K2 ∧ K1 ! K3 48 8.3 2.8
K0 ! K2 ∧ K1 = K3 48 8.3 3.6
K0 ! K2 ∧ K1 ! K3 144 5.7 3.2

exactly four matching words 4 13.0 3.4
exactly three matching words 48 9.8 3.2
exactly two matching words 180 6.5 3.1

no matching words 24 3.5 1.7

Table 4: Convergence generation for converged trials given number of matched words (average generation x̄, standard deviation σ).
Word Converged trials x̄ generation σ

exactly four matching words 52 / 120 1779.7 1352.0
exactly three matching words 471 / 1440 2196.9 1348.2
exactly two matching words 1175 / 5400 2408.9 1291.0

no matching words 85 / 720 2776.8 1207.8

7. Conclusion

From the first experiment, keys that were composed of more random words were more resilient to the EC attack.
Keys composed of all-on-bit words are more resilient than keys with all-off-bit words. Convergence rate is similarly
affected; more random words are more difficult. This EC method was capable of deriving degenerate keys since the
fitness function was based only on the ability of the key to encipher a message the same way as TEA given the same
key. In the second experiment, the difficulty of breaking keys was determined by matching (easier) or mismatching
(more difficult) words in (K0, K2) and (K1, K3). More matching words are easier to break with this EC than fewer
matching words. This is likely due to the word swapping behaviour of pitch adjustment operator borrowed from HS.
Degenerate keys are easiest to derive for key schemes which incorporate all on-bits in the first byte (0xFF000000) for
words in (K0, K1) and (K2, K3).
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Table 3: The proportion of convergences given three partitions of trials in the second experiment of this work. The first case splits apart trials based
on matches and mismatches of (K0, K1) and (K2, K3). The second case splits trials based on matches of (K0, K2) and (K1, K3). The third case
organizes cases based on the total number of matched words regardless of position. The affected keys indicates the number of key schemes which
fit the constraints of the matching words. Each of the affected key schemes has 30 trials (average x̄, standard deviation σ).

Arrangement of matching words Affected keys x̄ / 30 σ

K0 = K1 ∧ K2 = K3 16 7.0 4.4
K0 = K1 ∧ K2 ! K3 48 6.9 3.7
K0 ! K1 ∧ K2 = K3 48 6.9 4.1
K0 ! K1 ∧ K2 ! K3 144 7.0 3.2
K0 = K2 ∧ K1 = K3 16 10.8 2.8
K0 = K2 ∧ K1 ! K3 48 8.3 2.8
K0 ! K2 ∧ K1 = K3 48 8.3 3.6
K0 ! K2 ∧ K1 ! K3 144 5.7 3.2

exactly four matching words 4 13.0 3.4
exactly three matching words 48 9.8 3.2
exactly two matching words 180 6.5 3.1

no matching words 24 3.5 1.7

Table 4: Convergence generation for converged trials given number of matched words (average generation x̄, standard deviation σ).
Word Converged trials x̄ generation σ

exactly four matching words 52 / 120 1779.7 1352.0
exactly three matching words 471 / 1440 2196.9 1348.2
exactly two matching words 1175 / 5400 2408.9 1291.0

no matching words 85 / 720 2776.8 1207.8

7. Conclusion

From the first experiment, keys that were composed of more random words were more resilient to the EC attack.
Keys composed of all-on-bit words are more resilient than keys with all-off-bit words. Convergence rate is similarly
affected; more random words are more difficult. This EC method was capable of deriving degenerate keys since the
fitness function was based only on the ability of the key to encipher a message the same way as TEA given the same
key. In the second experiment, the difficulty of breaking keys was determined by matching (easier) or mismatching
(more difficult) words in (K0, K2) and (K1, K3). More matching words are easier to break with this EC than fewer
matching words. This is likely due to the word swapping behaviour of pitch adjustment operator borrowed from HS.
Degenerate keys are easiest to derive for key schemes which incorporate all on-bits in the first byte (0xFF000000) for
words in (K0, K1) and (K2, K3).
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Results
Experiment 2 - Summary Plots

Propor3on	  of	  Degenerate	  Keys

• large degenerate areas

• (K0, K1) = FF00000

• (K2, K3) = FF00000
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Conclusions
Experiment 1

{0x00000000,	  0xFFFFFFFF,	  0xXXXXXXXX}

• more	  random	  words	  implies	  more	  resilience

• all-‐on-‐bit	  words	  more	  resilient	  to	  all-‐off-‐bit

• EC	  method	  can	  find	  equivalent	  keys
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Conclusions
Experiment 2

{0xFF000000,	  0x00FF0000,	  0x0000FF00,	  0x000000FF}

• matched	  words	  in	  (K0,	  K2)	  and	  (K1,	  K3)	  easier

• more	  matched	  words	  even	  easier	  (due	  to	  HS)

• equivalent	  keys	  easiest	  to	  derive	  for	  words	  
with	  {0xFF000000}	  in	  (K0,	  K1)	  or	  (K2,	  K3).
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Conclusions

• EC	  methods	  capable	  of	  aAacking	  one-‐round	  
Feistel	  block	  ciphers.

• HS	  is	  par3cularly	  good	  at	  probing	  solu3ons	  
with	  repe33ons.

• Equivalent	  keys	  can	  also	  be	  derived.
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Thanks for listening!
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Results
Experiment 2 - Summary Plots

Propor3on	  of	  Convergences

• no obvious pattern
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Results
Experiment 2 - Summary Plots

Speed	  of	  Convergence

• no obvious pattern
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