
An evolutionary computation
attack on one-round TEA

Eddie YT Ma, MSc
Charlie Obimbo, PhD

University of Guelph, Ontario, Canada
for CAS 2011, Chicago

Agenda

• Problem	 Overview

• Tiny	 Encryp3on	 Algorithm

• Evolu3onary	 Computa3on

• Experimental	 Design

• Results

• Conclusions
2

Problem Overview

• In	 this	 project	 we	 aAack	 one-‐round	 TEA	 with	
evolu3onary	 computa3on.

3

Problem Overview

4

TEA
1-‐round

TEA	 is	 an	 elegant,	 light	 weight	 Feistel	 block	 cipher.
(Wheeler	 &	 Needham,	 1994)

plaintext
encryption key

ciphertext

Problem Overview

5

TEA
1-‐round

ciphertext

EC
GA+HS

plaintext
encryption key

encryption key

We	 use	 an	 evolu3onary	 computa3on	 algorithm	
to	 derive	 the	 encryp3on	 key.

Problem Overview

• This	 is	 called	 a	 known-‐plaintext	 aAack.

6

Agenda

• Problem	 Overview

• Tiny	 Encryp3on	 Algorithm	 ←

• Evolu3onary	 Computa3on

• Experimental	 Design

• Results

• Conclusions
7

TEA
Tiny Encryption Algorithm

• TEA	 is	 a	 Feistel	 block	 cipher.

• rounds	 of	 opera3on	 on	 the	 bits	 of	 plaintext

• opera3ons	 are	 subs3tu3ons,	 permuta3ons

• want:	 unique	 sequence	 of	 opera7ons	 for	 each	 key

8

TEA
Tiny Encryption Algorithm

9

TEA
32-‐round

plaintext

encryption key
ciphertextk[0] k[1] k[2] k[3]

m[0] m[1]

c[0] c[1]

The	 key	 is	 128-‐bits	 long	 (4	 ⨯	 32-‐bit	 words)
Text	 is	 operated	 in	 blocks	 of	 64-‐bits	 (2	 ⨯	 32-‐bit	 words)

TEA
Tiny Encryption Algorithm

10

delta	 is	 a	 constant
sum	 is	 as	 a	 key	 scheduler

“hi	 h” “ow	 a” “re	 y” “ou	 a” “ll	 t” “oday”

m[0] m[1]

c1[0] c1[1]

ro
un

d	
on

e

(first block)

“hi	 h” “ow	 a” “re	 y” “ou	 a” “ll	 t” “oday”

c1[0] c1[1]

c2[0] c2[1]

ro
un

d	
tw

o

...

“hi	 h” “ow	 a” “re	 y” “ou	 a” “ll	 t” “oday”

c31[0] c31[1]

c32[0] c32[1]

ro
un

d	
32

“ ” “ ”

...

“hi	 h” “ow	 a” “re	 y” “ou	 a” “ll	 t” “oday”

m[0] m[1]

c1[0] c1[1]

ro
un

d	
on

e

(next block)
“ ” “ ”

“hi	 h” “ow	 a” “re	 y” “ou	 a” “ll	 t” “oday”

c31[0] c31[1]

c32[0] c32[1]

ro
un

d	
32

“ ” “ ” “ ” “ ”

...

“hi	 h” “ow	 a” “re	 y” “ou	 a” “ll	 t” “oday”

c31[0] c31[1]

c32[0] c32[1]

ro
un

d	
32

“ ” “ ” “ ” “ ” “ ” “”

Etc.!

TEA
Tiny Encryption Algorithm

• We	 use	 one-‐round	 TEA	 for	 this	 project.

17

Agenda

• Problem	 Overview

• Tiny	 Encryp3on	 Algorithm

• Evolu3onary	 Computa3on	 ←

• Experimental	 Design

• Results

• Conclusions
18

EC
Evolutionary Computation

• a	 whole	 family	 of	 op7miza7on	 techniques

• all	 somewhat	 inspired	 by	 biological	 evolu7on

• we	 combine	 two	 techniques	 in	 this	 project

• gene7c	 algorithm	 and	 harmony	 search

19

GA
Genetic Algorithm

• search	 space	 represented	 by	 chromosomes

• op3mize	 a	 popula3on	 of	 chromosomes

• called	 evolu7on

• Let’s	 discuss	 this	 in	 context	 of	 this	 project.

20
(Fraser,	 1957)

GA
Genetic Algorithm • A Population

21

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

A	 popula3on	 of	 seventy	 chromosomes	 (keys).

Key	 1

Key	 2

Key	 3

Key	 70

: : : :

GA
Genetic Algorithm

• opera3ons	 performed	 on	 popula3on

• get	 beAer	 and	 beAer	 keys	 at	 each	 genera3on

22

GA
Genetic Algorithm • Point Mutation

23

k[0] k[1] k[2] k[3]

PM

k[0] k[1] k[2] k[3]

Opera3on	 1:	 We	 define	 a	 point	 muta3on	 as	 a	 bit-‐flip.
(2%	 uniform	 pseudorandom	 probability	 for	 each	 bit)

GA
Genetic Algorithm • Crossover

24

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

CO

k[0] k[1]

k[0] k[1]

k[2] k[3]

k[2] k[3]

Opera3on	 2:	 Two	 parents	 yield	 two	 children	 in	 crossover.
(pairs	 of	 parents	 are	 randomly	 selected)

GA
Genetic Algorithm • Fitness Function

• select	 the	 fiAest	 keys	 to	 con3nue

• unfit	 keys	 removed	 from	 popula3on

• want:	 fitness	 should	 improve	 over	 3me

• our	 fitness	 func3on	 is	 a	 hamming	 distance

25

GA
Genetic Algorithm • Fitness Function

26

Key	 1’s	 ciphertext

Key	 2’s	 ciphertext

Key	 3’s	 ciphertext

Correct	 Key’s	 ciphertext “ ” “ ” “ ” “ ”...

“ ” “ ” “ ” “ ”...

“ ” “ ” “” “”...

“ ” “” “”...“ ”

Hamming	 distance	 calculated	 for	 each	 key’s	 ciphertext	
against	 the	 correct	 key’s	 ciphertext.

HS
Harmony Search

• Let’s	 discuss	 this	 as	 a	 modifica3on	 to	 GA.

• two	 more	 operators

27

Harmony	 Search	 is	 inspired	 by	 musical	 improvisa7on
(Geem	 &	 Kim,	 2001)

28

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

: : : :
k[0] k[1] k[2] k[3]

IH

k[0] k[1] k[2] k[3]

Key	 1

Key	 2

Key	 3

Key	 70

HS Harmony Search • Improvise Harmony

Opera3on	 3:	 En3re	 popula3on	 used	 to	 improvise	 harmony.
(contribu3ng	 parents	 randomly	 selected)

HS
Harmony Search • Adjust Pitch

29

k[0] k[1] k[2] k[3]

AP

k[0] k[1] k[2] k[3]

Opera3on	 4:	 We	 define	 adjust	 pitch	 as	 byte	 or	 word	 swaps.
(pairs	 of	 bytes	 or	 words	 randomly	 selected	 within	 a	 key)

Agenda

• Problem	 Overview

• Tiny	 Encryp3on	 Algorithm

• Evolu3onary	 Computa3on

• Experimental	 Design	 ←

• Results

• Conclusions
30

Experimental Design

• We	 will	 now	 explain	 ...

• the	 arrangement	 of	 operators	 in	 the	 EC

• the	 selec7on	 of	 chromosomes	 in	 the	 EC

• selec3on	 of	 known	 plaintexts	 and	 keys

31

EC Operators & Selection

32

Each	 box	 is	 a	 reservoir	 of	 70	 keys.
Aher	 all	 opera3ons	 are	 complete,	 the	 best	 ten	 from	 each	 box	

are	 advanced	 to	 next	 genera3on.

Operating a population of keys in a generation ...

• Let’s	 talk	 about	 how	 we	 selected	 plaintexts

33

Plaintexts and Keys

34

• Plaintexts	 were	 chosen	 at	 random	 with	 a	
pseudorandom	 uniform	 number	 generator.

• Ciphertexts	 were	 calculated	 using	 one-‐round	 TEA.

• 100	 plaintext	 message	 blocks	 per	 trial

• 30	 trials	 per	 experiment

Plaintexts and Keys

35

• two	 experiments	 run	 given	 two	 keyschemes

• scheme	 1:	 create	 keys	 with	 the	 words	 ...

{0x00000000,	 0xFFFFFFFF,	 0xXXXXXXXX}†

• scheme	 2:	 create	 keys	 with	 the	 words	 ...

{0xFF000000,	 0x00FF0000,	 0x0000FF00,	 0x000000FF}

†0xXXXXXXXX	 is	 four	 random	 bytes.

Plaintexts and Keys

• Number	 of	 keys	 in	 keyscheme	 1:

• 34	 =	 81	 schemes

• Number	 of	 keys	 in	 keyscheme	 2:

• 44	 =	 256	 schemes

• Every	 single	 scheme	 was	 commiAed	 to	 30	
trials	 of	 randomly	 generated	 plaintexts.

36

Agenda

• Problem	 Overview

• Tiny	 Encryp3on	 Algorithm

• Evolu3onary	 Computa3on

• Experimental	 Design

• Results	 ←

• Conclusions
37

Results
Experiment 1

38

{0x00000000,	 0xFFFFFFFF,	 0xXXXXXXXX}

Results
Experiment 1 - Summary Plots

Propor3on	 of	
Convergences

• really easy:

• >2 zeros

• easy:

• (K0, K1) = 0 or F

• (K2, K3) = 0 or F

• hard:

• >1 X (random)
39

Results
Experiment 1 - Number of Convergences

40

Eddie Yee-Tak Ma and Charlie Obimbo / Procedia Computer Science 00 (2011) 1–6 4

6. Results

The relative performance of the present EC strategy in the first experiment is summarized in the three plots in
Figure 3.

Figure 3: The proportion of convergences for each key scheme (Left). The speed of convergence for converged trials (Centre). The proportion
of degenerate keys observed (Right). The radius of each dot is proportional to the value described and all values are normalized to the best value
achieved. A cross indicates that a value is missing because no convergences took place. These plots characterize the relative behaviours of keys
constructed from (0) words that are off-bits, (F) words that are on-bits and (X) words that are pseudorandom. The 32-bit words for each key are
K0, K1, K2, K3 from the first to the last word respectively.

The proportion of convergences observed depends on the number of 0 words, F words, and X but not on the
positions of these words. Table 1 is the number of convergences for counts of each type of word and summarizes the
data in the left plot of Figure 3.

Table 1: The average count of convergences over thirty trials given the occurrences of the words (0), (F), and (X).Occurrences indicates the number
of times a word appears in a key. Affected keys is the number of keys which contain the number of such words (average x̄, standard deviation σ).

Word Occurrences Affected keys x̄ / 30 σ

0

1 32 2.9 3.9
2 24 5.0 5.1
3 8 13.1 1.5
4 1 24.0 –

F

1 32 2.8 4.4
2 24 5.6 5.0
3 8 9.0 3.3
4 1 14.0 –

X

1 32 5.1 4.0
2 24 0.9 1.3
3 8 0.0 0.0
4 1 0.0 –

The highest number of convergences recorded were observed when all four words of the key were set to 0 while no
convergences were observed when three or four words of the key were X. These observations are consistent with our
expectation that higher entropy keys are harder. For keys consisting of 0 and F, convergences increases as the number
of occurrences of those words increase. The standard deviation also drops overall but rises when there are exactly two
occurrences of 0 and F. The word 0 is easier to derive than the word F due to the addition operator used in TEA. The
plot in the centre of Figure 3 is the relative speed of convergence; i.e. 5000 minus the number of generations needed
to converge. These values are in Table 2.

The keys composed of more 0 converge fastest with greater stability (lower σ). As before, trials deriving keys
with F follows next in performance leaving X to last place due to the high entropy of those keys. The right-side
plot in Figure 3 is the relative proportion of degenerate keys discovered. A degenerate key is a key that is equivalent

Average	 number	 of	 convergences	 over	 30	 trials
(with	 standard	 devia3on)

Results
Experiment 1 - Summary Plots

Speed	 of	
Convergence

• larger dot is earlier

• cross = no convergence

• same pattern as before

41

Results
Experiment 1 - Convergence Generation

42

Eddie Yee-Tak Ma and Charlie Obimbo / Procedia Computer Science 00 (2011) 1–6 5

Table 2: The generation of convergence for converged trials for keys containing a variable number of 0, F and X words (average x̄, standard
deviation σ). Occurrences indicates the number of such words in a given key, and converged trials indicates the proportion of trials which
successfully derived such a key.

Word Occurrences Converged trials x̄ generation σ

0

1 92 / 960 2069.6 1519.1
2 121 / 720 2192.8 1399.7
3 105 / 240 1699.0 1311.8
4 24 / 30 801.0 1112.8

F

1 89 / 960 2118.6 1504.9
2 135 / 720 2220.5 1370.9
3 72 / 240 1506.2 1334.5
4 14 / 30 1216.7 1357.5

X 1 164 / 960 2241.4 1435.5
2 22 / 720 2931.8 1466.5

to the one that is used to create the ciphertext. In TEA, each key is part of a degenerate triplet. A degenerate key
is discovered when a convergence to that key occurs. Degenerate triplets share all bits with one another with the
exception that the most significant bits in the first two words only, or the last two words only are flipped. The greatest
number of degenerate keys converged was five, found in the all-0 key.

The behaviour of the EC in the second experiment are in Figure 4. Here, four words were used to construct keys
where each word is composed of one byte that is all on, and all remaining bits off.

Figure 4: The proportion of convergences for each key scheme (Left). The speed of convergence for converged trials (Centre). The proportion of
degenerate keys observed (Right). Keys were constructed with words as follows: (0 is 0xFF000000), (1 is 0x00FF0000), (2 is 0x0000FF00), and
(3 is 0x000000FF). The 32-bit words for each key are K0, K1, K2, K3 from the first to last word respectively.

Table 3 shows three cases of convergence behaviour in the left plot of Figure 4. In case 1 when (K0, K1) or (K2,
K3) contain matched or mismatched words, no change in the average number of converged trials per key scheme is
seen. In case 2, when (K0, K2) or (K1, K3) are matched or mismatched, the number of convergences does change.
Two pairs of matched words shows the highest probability of convergence while two pairs of mismatched words
creates difficult keys to derive. Finally in case 3, a higher number of matched words regardless of position produces
easier keys to break.

Table 4 reports generation of convergence in the second experiment corresponding to the centre plot of Figure 4.
The amount of time required to converge increases with fewer matching words within the key. Finally, in the right
plot of Figure 4, two definite stretches of degenerate keys can be seen where (K0, K1) are the same forming a vertical
line and (K2, K3) forming a horizontal. The key composed of only the word 0xFF000000 has the the greatest number
of degenerate keys, nine.

Average	 genera3on	 of	 convergence	 over	 30	 trials
(with	 standard	 devia3on)

Results
Experiment 1 - Summary Plots

Propor3on	 of	
Degenerate	 Keys

• TEA degenerate keys

• each key is part of an
equivalent triplet

• (K0, K1) = 0 or F

• (K2, K3) = 0 or F

• large number of
random breaks:
{(000X), (FXFF),
(FFFX), (XXFF)}

43

Results
Experiment 2

44

{0xFF000000,	 0x00FF0000,	 0x0000FF00,	 0x000000FF}

Results
Experiment 2 - Number of Convergences

45

Eddie Yee-Tak Ma and Charlie Obimbo / Procedia Computer Science 00 (2011) 1–6 6

Table 3: The proportion of convergences given three partitions of trials in the second experiment of this work. The first case splits apart trials based
on matches and mismatches of (K0, K1) and (K2, K3). The second case splits trials based on matches of (K0, K2) and (K1, K3). The third case
organizes cases based on the total number of matched words regardless of position. The affected keys indicates the number of key schemes which
fit the constraints of the matching words. Each of the affected key schemes has 30 trials (average x̄, standard deviation σ).

Arrangement of matching words Affected keys x̄ / 30 σ

K0 = K1 ∧ K2 = K3 16 7.0 4.4
K0 = K1 ∧ K2 ! K3 48 6.9 3.7
K0 ! K1 ∧ K2 = K3 48 6.9 4.1
K0 ! K1 ∧ K2 ! K3 144 7.0 3.2
K0 = K2 ∧ K1 = K3 16 10.8 2.8
K0 = K2 ∧ K1 ! K3 48 8.3 2.8
K0 ! K2 ∧ K1 = K3 48 8.3 3.6
K0 ! K2 ∧ K1 ! K3 144 5.7 3.2

exactly four matching words 4 13.0 3.4
exactly three matching words 48 9.8 3.2
exactly two matching words 180 6.5 3.1

no matching words 24 3.5 1.7

Table 4: Convergence generation for converged trials given number of matched words (average generation x̄, standard deviation σ).
Word Converged trials x̄ generation σ

exactly four matching words 52 / 120 1779.7 1352.0
exactly three matching words 471 / 1440 2196.9 1348.2
exactly two matching words 1175 / 5400 2408.9 1291.0

no matching words 85 / 720 2776.8 1207.8

7. Conclusion

From the first experiment, keys that were composed of more random words were more resilient to the EC attack.
Keys composed of all-on-bit words are more resilient than keys with all-off-bit words. Convergence rate is similarly
affected; more random words are more difficult. This EC method was capable of deriving degenerate keys since the
fitness function was based only on the ability of the key to encipher a message the same way as TEA given the same
key. In the second experiment, the difficulty of breaking keys was determined by matching (easier) or mismatching
(more difficult) words in (K0, K2) and (K1, K3). More matching words are easier to break with this EC than fewer
matching words. This is likely due to the word swapping behaviour of pitch adjustment operator borrowed from HS.
Degenerate keys are easiest to derive for key schemes which incorporate all on-bits in the first byte (0xFF000000) for
words in (K0, K1) and (K2, K3).

References

[1] D. Wheeler, R. Needham, Tea, a tiny encryption algorithm, http:/www.cix.co.uk/ klockstone/tea.pdf (accessed April 2011).
[2] S. J. Shepherd, The tiny encryption algorithm, Cryptologia 31 (2007) 233 – 245.
[3] E. Laskaria, G. Meletiouc, Y. Stamatioud, M. Vrahatisa, Evolutionary computation based cryptanalysis: A first study, Nonlinear Analysis

63 (5-7) (2005) e823 – e830.
[4] R. Spillman, M. Janssen, B. Nelson, M. Kepner, Use of genetic algorithms in the cryptanalysis of simple substitution ciphers, Cryptologia

17 (1) (1993) 31 – 44.
[5] J. A. Brown, S. Houghten, B. Ombuki-Berman, Genetic algorithm cryptanalysis of a substitution permutation network, in: Computational

Intelligence in Cyber Security, 2009. CICS ’09. IEEE Symposium on, 2009, pp. 115 – 122.
[6] J. C. Hernández, J. M. Sierra, P. Isasi, A. Ribagorda, Genetic cryptoanalysis of two rounds tea, in: P. M. A. Sloot et al. (Ed.), ICCS 2002,

LNCS 2331, Springer-Verlag Berlin Heidelberg, 2002.
[7] A. Garrett, J. Hamilton, G. Dozier, A comparison of genetic algorithm techniques for the cryptanalysis of tea, International Journal of Intelligent

Control and Systems 12 (4) (2007) 325 – 330.
[8] W. Hu, Cryptanalyis of tea using quantum-inspired genetic algorithms, Journal of Software Engineering and Applications 3 (2010) 50 – 57.

Average	 number	 of	 convergences	 over	 30	 trials
(with	 standard	 devia3on)

Results
Experiment 2 - Convergence Generation

46
Average	 genera3on	 of	 convergence	 over	 30	 trials

(with	 standard	 devia3on)

Eddie Yee-Tak Ma and Charlie Obimbo / Procedia Computer Science 00 (2011) 1–6 6

Table 3: The proportion of convergences given three partitions of trials in the second experiment of this work. The first case splits apart trials based
on matches and mismatches of (K0, K1) and (K2, K3). The second case splits trials based on matches of (K0, K2) and (K1, K3). The third case
organizes cases based on the total number of matched words regardless of position. The affected keys indicates the number of key schemes which
fit the constraints of the matching words. Each of the affected key schemes has 30 trials (average x̄, standard deviation σ).

Arrangement of matching words Affected keys x̄ / 30 σ

K0 = K1 ∧ K2 = K3 16 7.0 4.4
K0 = K1 ∧ K2 ! K3 48 6.9 3.7
K0 ! K1 ∧ K2 = K3 48 6.9 4.1
K0 ! K1 ∧ K2 ! K3 144 7.0 3.2
K0 = K2 ∧ K1 = K3 16 10.8 2.8
K0 = K2 ∧ K1 ! K3 48 8.3 2.8
K0 ! K2 ∧ K1 = K3 48 8.3 3.6
K0 ! K2 ∧ K1 ! K3 144 5.7 3.2

exactly four matching words 4 13.0 3.4
exactly three matching words 48 9.8 3.2
exactly two matching words 180 6.5 3.1

no matching words 24 3.5 1.7

Table 4: Convergence generation for converged trials given number of matched words (average generation x̄, standard deviation σ).
Word Converged trials x̄ generation σ

exactly four matching words 52 / 120 1779.7 1352.0
exactly three matching words 471 / 1440 2196.9 1348.2
exactly two matching words 1175 / 5400 2408.9 1291.0

no matching words 85 / 720 2776.8 1207.8

7. Conclusion

From the first experiment, keys that were composed of more random words were more resilient to the EC attack.
Keys composed of all-on-bit words are more resilient than keys with all-off-bit words. Convergence rate is similarly
affected; more random words are more difficult. This EC method was capable of deriving degenerate keys since the
fitness function was based only on the ability of the key to encipher a message the same way as TEA given the same
key. In the second experiment, the difficulty of breaking keys was determined by matching (easier) or mismatching
(more difficult) words in (K0, K2) and (K1, K3). More matching words are easier to break with this EC than fewer
matching words. This is likely due to the word swapping behaviour of pitch adjustment operator borrowed from HS.
Degenerate keys are easiest to derive for key schemes which incorporate all on-bits in the first byte (0xFF000000) for
words in (K0, K1) and (K2, K3).

References

[1] D. Wheeler, R. Needham, Tea, a tiny encryption algorithm, http:/www.cix.co.uk/ klockstone/tea.pdf (accessed April 2011).
[2] S. J. Shepherd, The tiny encryption algorithm, Cryptologia 31 (2007) 233 – 245.
[3] E. Laskaria, G. Meletiouc, Y. Stamatioud, M. Vrahatisa, Evolutionary computation based cryptanalysis: A first study, Nonlinear Analysis

63 (5-7) (2005) e823 – e830.
[4] R. Spillman, M. Janssen, B. Nelson, M. Kepner, Use of genetic algorithms in the cryptanalysis of simple substitution ciphers, Cryptologia

17 (1) (1993) 31 – 44.
[5] J. A. Brown, S. Houghten, B. Ombuki-Berman, Genetic algorithm cryptanalysis of a substitution permutation network, in: Computational

Intelligence in Cyber Security, 2009. CICS ’09. IEEE Symposium on, 2009, pp. 115 – 122.
[6] J. C. Hernández, J. M. Sierra, P. Isasi, A. Ribagorda, Genetic cryptoanalysis of two rounds tea, in: P. M. A. Sloot et al. (Ed.), ICCS 2002,

LNCS 2331, Springer-Verlag Berlin Heidelberg, 2002.
[7] A. Garrett, J. Hamilton, G. Dozier, A comparison of genetic algorithm techniques for the cryptanalysis of tea, International Journal of Intelligent

Control and Systems 12 (4) (2007) 325 – 330.
[8] W. Hu, Cryptanalyis of tea using quantum-inspired genetic algorithms, Journal of Software Engineering and Applications 3 (2010) 50 – 57.

Results
Experiment 2 - Summary Plots

Propor3on	 of	 Degenerate	 Keys

• large degenerate areas

• (K0, K1) = FF00000

• (K2, K3) = FF00000

47

Agenda

• Problem	 Overview

• Tiny	 Encryp3on	 Algorithm

• Evolu3onary	 Computa3on

• Experimental	 Design

• Results

• Conclusions	 ←
48

Conclusions
Experiment 1

{0x00000000,	 0xFFFFFFFF,	 0xXXXXXXXX}

• more	 random	 words	 implies	 more	 resilience

• all-‐on-‐bit	 words	 more	 resilient	 to	 all-‐off-‐bit

• EC	 method	 can	 find	 equivalent	 keys

49

Conclusions
Experiment 2

{0xFF000000,	 0x00FF0000,	 0x0000FF00,	 0x000000FF}

• matched	 words	 in	 (K0,	 K2)	 and	 (K1,	 K3)	 easier

• more	 matched	 words	 even	 easier	 (due	 to	 HS)

• equivalent	 keys	 easiest	 to	 derive	 for	 words	
with	 {0xFF000000}	 in	 (K0,	 K1)	 or	 (K2,	 K3).

50

Conclusions

• EC	 methods	 capable	 of	 aAacking	 one-‐round	
Feistel	 block	 ciphers.

• HS	 is	 par3cularly	 good	 at	 probing	 solu3ons	
with	 repe33ons.

• Equivalent	 keys	 can	 also	 be	 derived.

51

Thanks for listening!

http://eddiema.ca

ema@uoguelph.ca

Results
Experiment 2 - Summary Plots

Propor3on	 of	 Convergences

• no obvious pattern

53

Results
Experiment 2 - Summary Plots

Speed	 of	 Convergence

• no obvious pattern

54

