
An evolutionary computation
attack on one-round TEA

Eddie YT Ma, MSc
Charlie Obimbo, PhD

University of Guelph, Ontario, Canada
for CAS 2011, Chicago

Agenda

• Problem	
 Overview

• Tiny	
 Encryp3on	
 Algorithm

• Evolu3onary	
 Computa3on

• Experimental	
 Design

• Results

• Conclusions
2

Problem Overview

• In	
 this	
 project	
 we	
 aAack	
 one-­‐round	
 TEA	
 with	

evolu3onary	
 computa3on.

3

Problem Overview

4

TEA
1-­‐round

TEA	
 is	
 an	
 elegant,	
 light	
 weight	
 Feistel	
 block	
 cipher.
(Wheeler	
 &	
 Needham,	
 1994)

plaintext
encryption key

ciphertext

Problem Overview

5

TEA
1-­‐round

ciphertext

EC
GA+HS

plaintext
encryption key

encryption key

We	
 use	
 an	
 evolu3onary	
 computa3on	
 algorithm	

to	
 derive	
 the	
 encryp3on	
 key.

Problem Overview

• This	
 is	
 called	
 a	
 known-­‐plaintext	
 aAack.

6

Agenda

• Problem	
 Overview

• Tiny	
 Encryp3on	
 Algorithm	
 ←

• Evolu3onary	
 Computa3on

• Experimental	
 Design

• Results

• Conclusions
7

TEA
Tiny Encryption Algorithm

• TEA	
 is	
 a	
 Feistel	
 block	
 cipher.

• rounds	
 of	
 opera3on	
 on	
 the	
 bits	
 of	
 plaintext

• opera3ons	
 are	
 subs3tu3ons,	
 permuta3ons

• want:	
 unique	
 sequence	
 of	
 opera7ons	
 for	
 each	
 key

8

TEA
Tiny Encryption Algorithm

9

TEA
32-­‐round

plaintext

encryption key
ciphertextk[0] k[1] k[2] k[3]

m[0] m[1]

c[0] c[1]

The	
 key	
 is	
 128-­‐bits	
 long	
 (4	
 ⨯	
 32-­‐bit	
 words)
Text	
 is	
 operated	
 in	
 blocks	
 of	
 64-­‐bits	
 (2	
 ⨯	
 32-­‐bit	
 words)

TEA
Tiny Encryption Algorithm

10

delta	
 is	
 a	
 constant
sum	
 is	
 as	
 a	
 key	
 scheduler

“hi	
 h” “ow	
 a” “re	
 y” “ou	
 a” “ll	
 t” “oday”

m[0] m[1]

c1[0] c1[1]

ro
un

d	

on

e

(first block)

“hi	
 h” “ow	
 a” “re	
 y” “ou	
 a” “ll	
 t” “oday”

c1[0] c1[1]

c2[0] c2[1]

ro
un

d	

tw

o

...

“hi	
 h” “ow	
 a” “re	
 y” “ou	
 a” “ll	
 t” “oday”

c31[0] c31[1]

c32[0] c32[1]

ro
un

d	

32

“ ” “ ”

...

“hi	
 h” “ow	
 a” “re	
 y” “ou	
 a” “ll	
 t” “oday”

m[0] m[1]

c1[0] c1[1]

ro
un

d	

on

e

(next block)
“ ” “ ”

“hi	
 h” “ow	
 a” “re	
 y” “ou	
 a” “ll	
 t” “oday”

c31[0] c31[1]

c32[0] c32[1]

ro
un

d	

32

“ ” “ ” “ ” “ ”

...

“hi	
 h” “ow	
 a” “re	
 y” “ou	
 a” “ll	
 t” “oday”

c31[0] c31[1]

c32[0] c32[1]

ro
un

d	

32

“ ” “ ” “ ” “ ” “ ” “”

Etc.!

TEA
Tiny Encryption Algorithm

• We	
 use	
 one-­‐round	
 TEA	
 for	
 this	
 project.

17

Agenda

• Problem	
 Overview

• Tiny	
 Encryp3on	
 Algorithm

• Evolu3onary	
 Computa3on	
 ←

• Experimental	
 Design

• Results

• Conclusions
18

EC
Evolutionary Computation

• a	
 whole	
 family	
 of	
 op7miza7on	
 techniques

• all	
 somewhat	
 inspired	
 by	
 biological	
 evolu7on

• we	
 combine	
 two	
 techniques	
 in	
 this	
 project

• gene7c	
 algorithm	
 and	
 harmony	
 search

19

GA
Genetic Algorithm

• search	
 space	
 represented	
 by	
 chromosomes

• op3mize	
 a	
 popula3on	
 of	
 chromosomes

• called	
 evolu7on

• Let’s	
 discuss	
 this	
 in	
 context	
 of	
 this	
 project.

20
(Fraser,	
 1957)

GA
Genetic Algorithm • A Population

21

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

A	
 popula3on	
 of	
 seventy	
 chromosomes	
 (keys).

Key	
 1

Key	
 2

Key	
 3

Key	
 70

: : : :

GA
Genetic Algorithm

• opera3ons	
 performed	
 on	
 popula3on

• get	
 beAer	
 and	
 beAer	
 keys	
 at	
 each	
 genera3on

22

GA
Genetic Algorithm • Point Mutation

23

k[0] k[1] k[2] k[3]

PM

k[0] k[1] k[2] k[3]

Opera3on	
 1:	
 We	
 define	
 a	
 point	
 muta3on	
 as	
 a	
 bit-­‐flip.
(2%	
 uniform	
 pseudorandom	
 probability	
 for	
 each	
 bit)

GA
Genetic Algorithm • Crossover

24

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

CO

k[0] k[1]

k[0] k[1]

k[2] k[3]

k[2] k[3]

Opera3on	
 2:	
 Two	
 parents	
 yield	
 two	
 children	
 in	
 crossover.
(pairs	
 of	
 parents	
 are	
 randomly	
 selected)

GA
Genetic Algorithm • Fitness Function

• select	
 the	
 fiAest	
 keys	
 to	
 con3nue

• unfit	
 keys	
 removed	
 from	
 popula3on

• want:	
 fitness	
 should	
 improve	
 over	
 3me

• our	
 fitness	
 func3on	
 is	
 a	
 hamming	
 distance

25

GA
Genetic Algorithm • Fitness Function

26

Key	
 1’s	
 ciphertext

Key	
 2’s	
 ciphertext

Key	
 3’s	
 ciphertext

Correct	
 Key’s	
 ciphertext “ ” “ ” “ ” “ ”...

“ ” “ ” “ ” “ ”...

“ ” “ ” “” “”...

“ ” “” “”...“ ”

Hamming	
 distance	
 calculated	
 for	
 each	
 key’s	
 ciphertext	

against	
 the	
 correct	
 key’s	
 ciphertext.

HS
Harmony Search

• Let’s	
 discuss	
 this	
 as	
 a	
 modifica3on	
 to	
 GA.

• two	
 more	
 operators

27

Harmony	
 Search	
 is	
 inspired	
 by	
 musical	
 improvisa7on
(Geem	
 &	
 Kim,	
 2001)

28

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

: : : :
k[0] k[1] k[2] k[3]

IH

k[0] k[1] k[2] k[3]

Key	
 1

Key	
 2

Key	
 3

Key	
 70

HS Harmony Search • Improvise Harmony

Opera3on	
 3:	
 En3re	
 popula3on	
 used	
 to	
 improvise	
 harmony.
(contribu3ng	
 parents	
 randomly	
 selected)

HS
Harmony Search • Adjust Pitch

29

k[0] k[1] k[2] k[3]

AP

k[0] k[1] k[2] k[3]

Opera3on	
 4:	
 We	
 define	
 adjust	
 pitch	
 as	
 byte	
 or	
 word	
 swaps.
(pairs	
 of	
 bytes	
 or	
 words	
 randomly	
 selected	
 within	
 a	
 key)

Agenda

• Problem	
 Overview

• Tiny	
 Encryp3on	
 Algorithm

• Evolu3onary	
 Computa3on

• Experimental	
 Design	
 ←

• Results

• Conclusions
30

Experimental Design

• We	
 will	
 now	
 explain	
 ...

• the	
 arrangement	
 of	
 operators	
 in	
 the	
 EC

• the	
 selec7on	
 of	
 chromosomes	
 in	
 the	
 EC

• selec3on	
 of	
 known	
 plaintexts	
 and	
 keys

31

EC Operators & Selection

32

Each	
 box	
 is	
 a	
 reservoir	
 of	
 70	
 keys.
Aher	
 all	
 opera3ons	
 are	
 complete,	
 the	
 best	
 ten	
 from	
 each	
 box	

are	
 advanced	
 to	
 next	
 genera3on.

Operating a population of keys in a generation ...

• Let’s	
 talk	
 about	
 how	
 we	
 selected	
 plaintexts

33

Plaintexts and Keys

34

• Plaintexts	
 were	
 chosen	
 at	
 random	
 with	
 a	

pseudorandom	
 uniform	
 number	
 generator.

• Ciphertexts	
 were	
 calculated	
 using	
 one-­‐round	
 TEA.

• 100	
 plaintext	
 message	
 blocks	
 per	
 trial

• 30	
 trials	
 per	
 experiment

Plaintexts and Keys

35

• two	
 experiments	
 run	
 given	
 two	
 keyschemes

• scheme	
 1:	
 create	
 keys	
 with	
 the	
 words	
 ...

{0x00000000,	
 0xFFFFFFFF,	
 0xXXXXXXXX}†

• scheme	
 2:	
 create	
 keys	
 with	
 the	
 words	
 ...

{0xFF000000,	
 0x00FF0000,	
 0x0000FF00,	
 0x000000FF}

†0xXXXXXXXX	
 is	
 four	
 random	
 bytes.

Plaintexts and Keys

• Number	
 of	
 keys	
 in	
 keyscheme	
 1:

• 34	
 =	
 81	
 schemes

• Number	
 of	
 keys	
 in	
 keyscheme	
 2:

• 44	
 =	
 256	
 schemes

• Every	
 single	
 scheme	
 was	
 commiAed	
 to	
 30	

trials	
 of	
 randomly	
 generated	
 plaintexts.

36

Agenda

• Problem	
 Overview

• Tiny	
 Encryp3on	
 Algorithm

• Evolu3onary	
 Computa3on

• Experimental	
 Design

• Results	
 ←

• Conclusions
37

Results
Experiment 1

38

{0x00000000,	
 0xFFFFFFFF,	
 0xXXXXXXXX}

Results
Experiment 1 - Summary Plots

Propor3on	
 of	

Convergences

• really easy:

• >2 zeros

• easy:

• (K0, K1) = 0 or F

• (K2, K3) = 0 or F

• hard:

• >1 X (random)
39

Results
Experiment 1 - Number of Convergences

40

Eddie Yee-Tak Ma and Charlie Obimbo / Procedia Computer Science 00 (2011) 1–6 4

6. Results

The relative performance of the present EC strategy in the first experiment is summarized in the three plots in
Figure 3.

Figure 3: The proportion of convergences for each key scheme (Left). The speed of convergence for converged trials (Centre). The proportion
of degenerate keys observed (Right). The radius of each dot is proportional to the value described and all values are normalized to the best value
achieved. A cross indicates that a value is missing because no convergences took place. These plots characterize the relative behaviours of keys
constructed from (0) words that are off-bits, (F) words that are on-bits and (X) words that are pseudorandom. The 32-bit words for each key are
K0, K1, K2, K3 from the first to the last word respectively.

The proportion of convergences observed depends on the number of 0 words, F words, and X but not on the
positions of these words. Table 1 is the number of convergences for counts of each type of word and summarizes the
data in the left plot of Figure 3.

Table 1: The average count of convergences over thirty trials given the occurrences of the words (0), (F), and (X).Occurrences indicates the number
of times a word appears in a key. Affected keys is the number of keys which contain the number of such words (average x̄, standard deviation σ).

Word Occurrences Affected keys x̄ / 30 σ

0

1 32 2.9 3.9
2 24 5.0 5.1
3 8 13.1 1.5
4 1 24.0 –

F

1 32 2.8 4.4
2 24 5.6 5.0
3 8 9.0 3.3
4 1 14.0 –

X

1 32 5.1 4.0
2 24 0.9 1.3
3 8 0.0 0.0
4 1 0.0 –

The highest number of convergences recorded were observed when all four words of the key were set to 0 while no
convergences were observed when three or four words of the key were X. These observations are consistent with our
expectation that higher entropy keys are harder. For keys consisting of 0 and F, convergences increases as the number
of occurrences of those words increase. The standard deviation also drops overall but rises when there are exactly two
occurrences of 0 and F. The word 0 is easier to derive than the word F due to the addition operator used in TEA. The
plot in the centre of Figure 3 is the relative speed of convergence; i.e. 5000 minus the number of generations needed
to converge. These values are in Table 2.

The keys composed of more 0 converge fastest with greater stability (lower σ). As before, trials deriving keys
with F follows next in performance leaving X to last place due to the high entropy of those keys. The right-side
plot in Figure 3 is the relative proportion of degenerate keys discovered. A degenerate key is a key that is equivalent

Average	
 number	
 of	
 convergences	
 over	
 30	
 trials
(with	
 standard	
 devia3on)

Results
Experiment 1 - Summary Plots

Speed	
 of	

Convergence

• larger dot is earlier

• cross = no convergence

• same pattern as before

41

Results
Experiment 1 - Convergence Generation

42

Eddie Yee-Tak Ma and Charlie Obimbo / Procedia Computer Science 00 (2011) 1–6 5

Table 2: The generation of convergence for converged trials for keys containing a variable number of 0, F and X words (average x̄, standard
deviation σ). Occurrences indicates the number of such words in a given key, and converged trials indicates the proportion of trials which
successfully derived such a key.

Word Occurrences Converged trials x̄ generation σ

0

1 92 / 960 2069.6 1519.1
2 121 / 720 2192.8 1399.7
3 105 / 240 1699.0 1311.8
4 24 / 30 801.0 1112.8

F

1 89 / 960 2118.6 1504.9
2 135 / 720 2220.5 1370.9
3 72 / 240 1506.2 1334.5
4 14 / 30 1216.7 1357.5

X 1 164 / 960 2241.4 1435.5
2 22 / 720 2931.8 1466.5

to the one that is used to create the ciphertext. In TEA, each key is part of a degenerate triplet. A degenerate key
is discovered when a convergence to that key occurs. Degenerate triplets share all bits with one another with the
exception that the most significant bits in the first two words only, or the last two words only are flipped. The greatest
number of degenerate keys converged was five, found in the all-0 key.

The behaviour of the EC in the second experiment are in Figure 4. Here, four words were used to construct keys
where each word is composed of one byte that is all on, and all remaining bits off.

Figure 4: The proportion of convergences for each key scheme (Left). The speed of convergence for converged trials (Centre). The proportion of
degenerate keys observed (Right). Keys were constructed with words as follows: (0 is 0xFF000000), (1 is 0x00FF0000), (2 is 0x0000FF00), and
(3 is 0x000000FF). The 32-bit words for each key are K0, K1, K2, K3 from the first to last word respectively.

Table 3 shows three cases of convergence behaviour in the left plot of Figure 4. In case 1 when (K0, K1) or (K2,
K3) contain matched or mismatched words, no change in the average number of converged trials per key scheme is
seen. In case 2, when (K0, K2) or (K1, K3) are matched or mismatched, the number of convergences does change.
Two pairs of matched words shows the highest probability of convergence while two pairs of mismatched words
creates difficult keys to derive. Finally in case 3, a higher number of matched words regardless of position produces
easier keys to break.

Table 4 reports generation of convergence in the second experiment corresponding to the centre plot of Figure 4.
The amount of time required to converge increases with fewer matching words within the key. Finally, in the right
plot of Figure 4, two definite stretches of degenerate keys can be seen where (K0, K1) are the same forming a vertical
line and (K2, K3) forming a horizontal. The key composed of only the word 0xFF000000 has the the greatest number
of degenerate keys, nine.

Average	
 genera3on	
 of	
 convergence	
 over	
 30	
 trials
(with	
 standard	
 devia3on)

Results
Experiment 1 - Summary Plots

Propor3on	
 of	

Degenerate	
 Keys

• TEA degenerate keys

• each key is part of an
equivalent triplet

• (K0, K1) = 0 or F

• (K2, K3) = 0 or F

• large number of
random breaks:
{(000X), (FXFF),
(FFFX), (XXFF)}

43

Results
Experiment 2

44

{0xFF000000,	
 0x00FF0000,	
 0x0000FF00,	
 0x000000FF}

Results
Experiment 2 - Number of Convergences

45

Eddie Yee-Tak Ma and Charlie Obimbo / Procedia Computer Science 00 (2011) 1–6 6

Table 3: The proportion of convergences given three partitions of trials in the second experiment of this work. The first case splits apart trials based
on matches and mismatches of (K0, K1) and (K2, K3). The second case splits trials based on matches of (K0, K2) and (K1, K3). The third case
organizes cases based on the total number of matched words regardless of position. The affected keys indicates the number of key schemes which
fit the constraints of the matching words. Each of the affected key schemes has 30 trials (average x̄, standard deviation σ).

Arrangement of matching words Affected keys x̄ / 30 σ

K0 = K1 ∧ K2 = K3 16 7.0 4.4
K0 = K1 ∧ K2 ! K3 48 6.9 3.7
K0 ! K1 ∧ K2 = K3 48 6.9 4.1
K0 ! K1 ∧ K2 ! K3 144 7.0 3.2
K0 = K2 ∧ K1 = K3 16 10.8 2.8
K0 = K2 ∧ K1 ! K3 48 8.3 2.8
K0 ! K2 ∧ K1 = K3 48 8.3 3.6
K0 ! K2 ∧ K1 ! K3 144 5.7 3.2

exactly four matching words 4 13.0 3.4
exactly three matching words 48 9.8 3.2
exactly two matching words 180 6.5 3.1

no matching words 24 3.5 1.7

Table 4: Convergence generation for converged trials given number of matched words (average generation x̄, standard deviation σ).
Word Converged trials x̄ generation σ

exactly four matching words 52 / 120 1779.7 1352.0
exactly three matching words 471 / 1440 2196.9 1348.2
exactly two matching words 1175 / 5400 2408.9 1291.0

no matching words 85 / 720 2776.8 1207.8

7. Conclusion

From the first experiment, keys that were composed of more random words were more resilient to the EC attack.
Keys composed of all-on-bit words are more resilient than keys with all-off-bit words. Convergence rate is similarly
affected; more random words are more difficult. This EC method was capable of deriving degenerate keys since the
fitness function was based only on the ability of the key to encipher a message the same way as TEA given the same
key. In the second experiment, the difficulty of breaking keys was determined by matching (easier) or mismatching
(more difficult) words in (K0, K2) and (K1, K3). More matching words are easier to break with this EC than fewer
matching words. This is likely due to the word swapping behaviour of pitch adjustment operator borrowed from HS.
Degenerate keys are easiest to derive for key schemes which incorporate all on-bits in the first byte (0xFF000000) for
words in (K0, K1) and (K2, K3).

References

[1] D. Wheeler, R. Needham, Tea, a tiny encryption algorithm, http:/www.cix.co.uk/ klockstone/tea.pdf (accessed April 2011).
[2] S. J. Shepherd, The tiny encryption algorithm, Cryptologia 31 (2007) 233 – 245.
[3] E. Laskaria, G. Meletiouc, Y. Stamatioud, M. Vrahatisa, Evolutionary computation based cryptanalysis: A first study, Nonlinear Analysis

63 (5-7) (2005) e823 – e830.
[4] R. Spillman, M. Janssen, B. Nelson, M. Kepner, Use of genetic algorithms in the cryptanalysis of simple substitution ciphers, Cryptologia

17 (1) (1993) 31 – 44.
[5] J. A. Brown, S. Houghten, B. Ombuki-Berman, Genetic algorithm cryptanalysis of a substitution permutation network, in: Computational

Intelligence in Cyber Security, 2009. CICS ’09. IEEE Symposium on, 2009, pp. 115 – 122.
[6] J. C. Hernández, J. M. Sierra, P. Isasi, A. Ribagorda, Genetic cryptoanalysis of two rounds tea, in: P. M. A. Sloot et al. (Ed.), ICCS 2002,

LNCS 2331, Springer-Verlag Berlin Heidelberg, 2002.
[7] A. Garrett, J. Hamilton, G. Dozier, A comparison of genetic algorithm techniques for the cryptanalysis of tea, International Journal of Intelligent

Control and Systems 12 (4) (2007) 325 – 330.
[8] W. Hu, Cryptanalyis of tea using quantum-inspired genetic algorithms, Journal of Software Engineering and Applications 3 (2010) 50 – 57.

Average	
 number	
 of	
 convergences	
 over	
 30	
 trials
(with	
 standard	
 devia3on)

Results
Experiment 2 - Convergence Generation

46
Average	
 genera3on	
 of	
 convergence	
 over	
 30	
 trials

(with	
 standard	
 devia3on)

Eddie Yee-Tak Ma and Charlie Obimbo / Procedia Computer Science 00 (2011) 1–6 6

Table 3: The proportion of convergences given three partitions of trials in the second experiment of this work. The first case splits apart trials based
on matches and mismatches of (K0, K1) and (K2, K3). The second case splits trials based on matches of (K0, K2) and (K1, K3). The third case
organizes cases based on the total number of matched words regardless of position. The affected keys indicates the number of key schemes which
fit the constraints of the matching words. Each of the affected key schemes has 30 trials (average x̄, standard deviation σ).

Arrangement of matching words Affected keys x̄ / 30 σ

K0 = K1 ∧ K2 = K3 16 7.0 4.4
K0 = K1 ∧ K2 ! K3 48 6.9 3.7
K0 ! K1 ∧ K2 = K3 48 6.9 4.1
K0 ! K1 ∧ K2 ! K3 144 7.0 3.2
K0 = K2 ∧ K1 = K3 16 10.8 2.8
K0 = K2 ∧ K1 ! K3 48 8.3 2.8
K0 ! K2 ∧ K1 = K3 48 8.3 3.6
K0 ! K2 ∧ K1 ! K3 144 5.7 3.2

exactly four matching words 4 13.0 3.4
exactly three matching words 48 9.8 3.2
exactly two matching words 180 6.5 3.1

no matching words 24 3.5 1.7

Table 4: Convergence generation for converged trials given number of matched words (average generation x̄, standard deviation σ).
Word Converged trials x̄ generation σ

exactly four matching words 52 / 120 1779.7 1352.0
exactly three matching words 471 / 1440 2196.9 1348.2
exactly two matching words 1175 / 5400 2408.9 1291.0

no matching words 85 / 720 2776.8 1207.8

7. Conclusion

From the first experiment, keys that were composed of more random words were more resilient to the EC attack.
Keys composed of all-on-bit words are more resilient than keys with all-off-bit words. Convergence rate is similarly
affected; more random words are more difficult. This EC method was capable of deriving degenerate keys since the
fitness function was based only on the ability of the key to encipher a message the same way as TEA given the same
key. In the second experiment, the difficulty of breaking keys was determined by matching (easier) or mismatching
(more difficult) words in (K0, K2) and (K1, K3). More matching words are easier to break with this EC than fewer
matching words. This is likely due to the word swapping behaviour of pitch adjustment operator borrowed from HS.
Degenerate keys are easiest to derive for key schemes which incorporate all on-bits in the first byte (0xFF000000) for
words in (K0, K1) and (K2, K3).

References

[1] D. Wheeler, R. Needham, Tea, a tiny encryption algorithm, http:/www.cix.co.uk/ klockstone/tea.pdf (accessed April 2011).
[2] S. J. Shepherd, The tiny encryption algorithm, Cryptologia 31 (2007) 233 – 245.
[3] E. Laskaria, G. Meletiouc, Y. Stamatioud, M. Vrahatisa, Evolutionary computation based cryptanalysis: A first study, Nonlinear Analysis

63 (5-7) (2005) e823 – e830.
[4] R. Spillman, M. Janssen, B. Nelson, M. Kepner, Use of genetic algorithms in the cryptanalysis of simple substitution ciphers, Cryptologia

17 (1) (1993) 31 – 44.
[5] J. A. Brown, S. Houghten, B. Ombuki-Berman, Genetic algorithm cryptanalysis of a substitution permutation network, in: Computational

Intelligence in Cyber Security, 2009. CICS ’09. IEEE Symposium on, 2009, pp. 115 – 122.
[6] J. C. Hernández, J. M. Sierra, P. Isasi, A. Ribagorda, Genetic cryptoanalysis of two rounds tea, in: P. M. A. Sloot et al. (Ed.), ICCS 2002,

LNCS 2331, Springer-Verlag Berlin Heidelberg, 2002.
[7] A. Garrett, J. Hamilton, G. Dozier, A comparison of genetic algorithm techniques for the cryptanalysis of tea, International Journal of Intelligent

Control and Systems 12 (4) (2007) 325 – 330.
[8] W. Hu, Cryptanalyis of tea using quantum-inspired genetic algorithms, Journal of Software Engineering and Applications 3 (2010) 50 – 57.

Results
Experiment 2 - Summary Plots

Propor3on	
 of	
 Degenerate	
 Keys

• large degenerate areas

• (K0, K1) = FF00000

• (K2, K3) = FF00000

47

Agenda

• Problem	
 Overview

• Tiny	
 Encryp3on	
 Algorithm

• Evolu3onary	
 Computa3on

• Experimental	
 Design

• Results

• Conclusions	
 ←
48

Conclusions
Experiment 1

{0x00000000,	
 0xFFFFFFFF,	
 0xXXXXXXXX}

• more	
 random	
 words	
 implies	
 more	
 resilience

• all-­‐on-­‐bit	
 words	
 more	
 resilient	
 to	
 all-­‐off-­‐bit

• EC	
 method	
 can	
 find	
 equivalent	
 keys

49

Conclusions
Experiment 2

{0xFF000000,	
 0x00FF0000,	
 0x0000FF00,	
 0x000000FF}

• matched	
 words	
 in	
 (K0,	
 K2)	
 and	
 (K1,	
 K3)	
 easier

• more	
 matched	
 words	
 even	
 easier	
 (due	
 to	
 HS)

• equivalent	
 keys	
 easiest	
 to	
 derive	
 for	
 words	

with	
 {0xFF000000}	
 in	
 (K0,	
 K1)	
 or	
 (K2,	
 K3).

50

Conclusions

• EC	
 methods	
 capable	
 of	
 aAacking	
 one-­‐round	

Feistel	
 block	
 ciphers.

• HS	
 is	
 par3cularly	
 good	
 at	
 probing	
 solu3ons	

with	
 repe33ons.

• Equivalent	
 keys	
 can	
 also	
 be	
 derived.

51

Thanks for listening!

http://eddiema.ca

ema@uoguelph.ca

Results
Experiment 2 - Summary Plots

Propor3on	
 of	
 Convergences

• no obvious pattern

53

Results
Experiment 2 - Summary Plots

Speed	
 of	
 Convergence

• no obvious pattern

54

