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Problem Overview

• In	
  this	
  project	
  we	
  aAack	
  one-­‐round	
  TEA	
  with	
  
evolu3onary	
  computa3on.
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TEA
1-­‐round

TEA	
  is	
  an	
  elegant,	
  light	
  weight	
  Feistel	
  block	
  cipher.
(Wheeler	
  &	
  Needham,	
  1994)

plaintext
encryption key

ciphertext
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TEA
1-­‐round

ciphertext

EC
GA+HS

plaintext
encryption key

encryption key

We	
  use	
  an	
  evolu3onary	
  computa3on	
  algorithm	
  
to	
  derive	
  the	
  encryp3on	
  key.



Problem Overview

• This	
  is	
  called	
  a	
  known-­‐plaintext	
  aAack.
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TEA
Tiny Encryption Algorithm

• TEA	
  is	
  a	
  Feistel	
  block	
  cipher.

• rounds	
  of	
  opera3on	
  on	
  the	
  bits	
  of	
  plaintext

• opera3ons	
  are	
  subs3tu3ons,	
  permuta3ons

• want:	
  unique	
  sequence	
  of	
  opera7ons	
  for	
  each	
  key
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TEA
Tiny Encryption Algorithm
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TEA
32-­‐round

plaintext

encryption key
ciphertextk[0] k[1] k[2] k[3]

m[0] m[1]

c[0] c[1]

The	
  key	
  is	
  128-­‐bits	
  long	
  (4	
  ⨯	
  32-­‐bit	
  words)
Text	
  is	
  operated	
  in	
  blocks	
  of	
  64-­‐bits	
  (2	
  ⨯	
  32-­‐bit	
  words)



TEA
Tiny Encryption Algorithm
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delta	
  is	
  a	
  constant
sum	
  is	
  as	
  a	
  key	
  scheduler
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TEA
Tiny Encryption Algorithm

• We	
  use	
  one-­‐round	
  TEA	
  for	
  this	
  project.
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EC
Evolutionary Computation

• a	
  whole	
  family	
  of	
  op7miza7on	
  techniques

• all	
  somewhat	
  inspired	
  by	
  biological	
  evolu7on

• we	
  combine	
  two	
  techniques	
  in	
  this	
  project

• gene7c	
  algorithm	
  and	
  harmony	
  search
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GA
Genetic Algorithm

• search	
  space	
  represented	
  by	
  chromosomes

• op3mize	
  a	
  popula3on	
  of	
  chromosomes

• called	
  evolu7on

• Let’s	
  discuss	
  this	
  in	
  context	
  of	
  this	
  project.

20
(Fraser,	
  1957)



GA
Genetic Algorithm • A Population
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k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

A	
  popula3on	
  of	
  seventy	
  chromosomes	
  (keys).

Key	
  1

Key	
  2

Key	
  3

Key	
  70

: : : :



GA
Genetic Algorithm

• opera3ons	
  performed	
  on	
  popula3on

• get	
  beAer	
  and	
  beAer	
  keys	
  at	
  each	
  genera3on
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GA
Genetic Algorithm • Point Mutation
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k[0] k[1] k[2] k[3]

PM

k[0] k[1] k[2] k[3]

Opera3on	
  1:	
  We	
  define	
  a	
  point	
  muta3on	
  as	
  a	
  bit-­‐flip.
(2%	
  uniform	
  pseudorandom	
  probability	
  for	
  each	
  bit)



GA
Genetic Algorithm • Crossover
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k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

CO

k[0] k[1]

k[0] k[1]

k[2] k[3]

k[2] k[3]

Opera3on	
  2:	
  Two	
  parents	
  yield	
  two	
  children	
  in	
  crossover.
(pairs	
  of	
  parents	
  are	
  randomly	
  selected)



GA
Genetic Algorithm • Fitness Function

• select	
  the	
  fiAest	
  keys	
  to	
  con3nue

• unfit	
  keys	
  removed	
  from	
  popula3on

• want:	
  fitness	
  should	
  improve	
  over	
  3me

• our	
  fitness	
  func3on	
  is	
  a	
  hamming	
  distance

25



GA
Genetic Algorithm • Fitness Function
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Key	
  1’s	
  ciphertext

Key	
  2’s	
  ciphertext

Key	
  3’s	
  ciphertext

Correct	
  Key’s	
  ciphertext “ ” “ ” “ ” “ ”...

“ ” “ ” “ ” “ ”...

“ ” “ ” “” “”...

“ ” “” “”...“ ”

Hamming	
  distance	
  calculated	
  for	
  each	
  key’s	
  ciphertext	
  
against	
  the	
  correct	
  key’s	
  ciphertext.



HS
Harmony Search

• Let’s	
  discuss	
  this	
  as	
  a	
  modifica3on	
  to	
  GA.

• two	
  more	
  operators

27

Harmony	
  Search	
  is	
  inspired	
  by	
  musical	
  improvisa7on
(Geem	
  &	
  Kim,	
  2001)
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k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

k[0] k[1] k[2] k[3]

: : : :
k[0] k[1] k[2] k[3]

IH

k[0] k[1] k[2] k[3]

Key	
  1

Key	
  2

Key	
  3

Key	
  70

HS Harmony Search • Improvise Harmony

Opera3on	
  3:	
  En3re	
  popula3on	
  used	
  to	
  improvise	
  harmony.
(contribu3ng	
  parents	
  randomly	
  selected)



HS
Harmony Search • Adjust Pitch
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k[0] k[1] k[2] k[3]

AP

k[0] k[1] k[2] k[3]

Opera3on	
  4:	
  We	
  define	
  adjust	
  pitch	
  as	
  byte	
  or	
  word	
  swaps.
(pairs	
  of	
  bytes	
  or	
  words	
  randomly	
  selected	
  within	
  a	
  key)
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Experimental Design

• We	
  will	
  now	
  explain	
  ...

• the	
  arrangement	
  of	
  operators	
  in	
  the	
  EC

• the	
  selec7on	
  of	
  chromosomes	
  in	
  the	
  EC

• selec3on	
  of	
  known	
  plaintexts	
  and	
  keys

31



EC Operators & Selection

32

Each	
  box	
  is	
  a	
  reservoir	
  of	
  70	
  keys.
Aher	
  all	
  opera3ons	
  are	
  complete,	
  the	
  best	
  ten	
  from	
  each	
  box	
  

are	
  advanced	
  to	
  next	
  genera3on.

Operating a population of keys in a generation ...



• Let’s	
  talk	
  about	
  how	
  we	
  selected	
  plaintexts

33



Plaintexts and Keys

34

• Plaintexts	
  were	
  chosen	
  at	
  random	
  with	
  a	
  
pseudorandom	
  uniform	
  number	
  generator.

• Ciphertexts	
  were	
  calculated	
  using	
  one-­‐round	
  TEA.

• 100	
  plaintext	
  message	
  blocks	
  per	
  trial

• 30	
  trials	
  per	
  experiment



Plaintexts and Keys

35

• two	
  experiments	
  run	
  given	
  two	
  keyschemes

• scheme	
  1:	
  create	
  keys	
  with	
  the	
  words	
  ...

{0x00000000,	
  0xFFFFFFFF,	
  0xXXXXXXXX}†

• scheme	
  2:	
  create	
  keys	
  with	
  the	
  words	
  ...

{0xFF000000,	
  0x00FF0000,	
  0x0000FF00,	
  0x000000FF}

†0xXXXXXXXX	
  is	
  four	
  random	
  bytes.



Plaintexts and Keys

• Number	
  of	
  keys	
  in	
  keyscheme	
  1:

• 34	
  =	
  81	
  schemes

• Number	
  of	
  keys	
  in	
  keyscheme	
  2:

• 44	
  =	
  256	
  schemes

• Every	
  single	
  scheme	
  was	
  commiAed	
  to	
  30	
  
trials	
  of	
  randomly	
  generated	
  plaintexts.
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Results
Experiment 1
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{0x00000000,	
  0xFFFFFFFF,	
  0xXXXXXXXX}



Results
Experiment 1 - Summary Plots

Propor3on	
  of	
  
Convergences

• really easy:

• >2 zeros

• easy:

• (K0, K1) = 0 or F

• (K2, K3) = 0 or F

• hard:

• >1  X (random)
39



Results
Experiment 1 - Number of Convergences
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6. Results

The relative performance of the present EC strategy in the first experiment is summarized in the three plots in
Figure 3.

Figure 3: The proportion of convergences for each key scheme (Left). The speed of convergence for converged trials (Centre). The proportion
of degenerate keys observed (Right). The radius of each dot is proportional to the value described and all values are normalized to the best value
achieved. A cross indicates that a value is missing because no convergences took place. These plots characterize the relative behaviours of keys
constructed from (0) words that are off-bits, (F) words that are on-bits and (X) words that are pseudorandom. The 32-bit words for each key are
K0, K1, K2, K3 from the first to the last word respectively.

The proportion of convergences observed depends on the number of 0 words, F words, and X but not on the
positions of these words. Table 1 is the number of convergences for counts of each type of word and summarizes the
data in the left plot of Figure 3.

Table 1: The average count of convergences over thirty trials given the occurrences of the words (0), (F), and (X).Occurrences indicates the number
of times a word appears in a key. Affected keys is the number of keys which contain the number of such words (average x̄, standard deviation σ).

Word Occurrences Affected keys x̄ / 30 σ

0

1 32 2.9 3.9
2 24 5.0 5.1
3 8 13.1 1.5
4 1 24.0 –

F

1 32 2.8 4.4
2 24 5.6 5.0
3 8 9.0 3.3
4 1 14.0 –

X

1 32 5.1 4.0
2 24 0.9 1.3
3 8 0.0 0.0
4 1 0.0 –

The highest number of convergences recorded were observed when all four words of the key were set to 0 while no
convergences were observed when three or four words of the key were X. These observations are consistent with our
expectation that higher entropy keys are harder. For keys consisting of 0 and F, convergences increases as the number
of occurrences of those words increase. The standard deviation also drops overall but rises when there are exactly two
occurrences of 0 and F. The word 0 is easier to derive than the word F due to the addition operator used in TEA. The
plot in the centre of Figure 3 is the relative speed of convergence; i.e. 5000 minus the number of generations needed
to converge. These values are in Table 2.

The keys composed of more 0 converge fastest with greater stability (lower σ). As before, trials deriving keys
with F follows next in performance leaving X to last place due to the high entropy of those keys. The right-side
plot in Figure 3 is the relative proportion of degenerate keys discovered. A degenerate key is a key that is equivalent

Average	
  number	
  of	
  convergences	
  over	
  30	
  trials
(with	
  standard	
  devia3on)



Results
Experiment 1 - Summary Plots

Speed	
  of	
  
Convergence

• larger dot is earlier

• cross = no convergence

• same pattern as before
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Experiment 1 - Convergence Generation
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Table 2: The generation of convergence for converged trials for keys containing a variable number of 0, F and X words (average x̄, standard
deviation σ). Occurrences indicates the number of such words in a given key, and converged trials indicates the proportion of trials which
successfully derived such a key.

Word Occurrences Converged trials x̄ generation σ

0

1 92 / 960 2069.6 1519.1
2 121 / 720 2192.8 1399.7
3 105 / 240 1699.0 1311.8
4 24 / 30 801.0 1112.8

F

1 89 / 960 2118.6 1504.9
2 135 / 720 2220.5 1370.9
3 72 / 240 1506.2 1334.5
4 14 / 30 1216.7 1357.5

X 1 164 / 960 2241.4 1435.5
2 22 / 720 2931.8 1466.5

to the one that is used to create the ciphertext. In TEA, each key is part of a degenerate triplet. A degenerate key
is discovered when a convergence to that key occurs. Degenerate triplets share all bits with one another with the
exception that the most significant bits in the first two words only, or the last two words only are flipped. The greatest
number of degenerate keys converged was five, found in the all-0 key.

The behaviour of the EC in the second experiment are in Figure 4. Here, four words were used to construct keys
where each word is composed of one byte that is all on, and all remaining bits off.

Figure 4: The proportion of convergences for each key scheme (Left). The speed of convergence for converged trials (Centre). The proportion of
degenerate keys observed (Right). Keys were constructed with words as follows: (0 is 0xFF000000), (1 is 0x00FF0000), (2 is 0x0000FF00), and
(3 is 0x000000FF). The 32-bit words for each key are K0, K1, K2, K3 from the first to last word respectively.

Table 3 shows three cases of convergence behaviour in the left plot of Figure 4. In case 1 when (K0, K1) or (K2,
K3) contain matched or mismatched words, no change in the average number of converged trials per key scheme is
seen. In case 2, when (K0, K2) or (K1, K3) are matched or mismatched, the number of convergences does change.
Two pairs of matched words shows the highest probability of convergence while two pairs of mismatched words
creates difficult keys to derive. Finally in case 3, a higher number of matched words regardless of position produces
easier keys to break.

Table 4 reports generation of convergence in the second experiment corresponding to the centre plot of Figure 4.
The amount of time required to converge increases with fewer matching words within the key. Finally, in the right
plot of Figure 4, two definite stretches of degenerate keys can be seen where (K0, K1) are the same forming a vertical
line and (K2, K3) forming a horizontal. The key composed of only the word 0xFF000000 has the the greatest number
of degenerate keys, nine.

Average	
  genera3on	
  of	
  convergence	
  over	
  30	
  trials
(with	
  standard	
  devia3on)
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Experiment 1 - Summary Plots

Propor3on	
  of	
  
Degenerate	
  Keys

• TEA degenerate keys

• each key is part of an 
equivalent triplet

• (K0, K1) = 0 or F

• (K2, K3) = 0 or F

• large number of 
random breaks: 
{(000X), (FXFF), 
(FFFX), (XXFF)}
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Results
Experiment 2
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{0xFF000000,	
  0x00FF0000,	
  0x0000FF00,	
  0x000000FF}
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Table 3: The proportion of convergences given three partitions of trials in the second experiment of this work. The first case splits apart trials based
on matches and mismatches of (K0, K1) and (K2, K3). The second case splits trials based on matches of (K0, K2) and (K1, K3). The third case
organizes cases based on the total number of matched words regardless of position. The affected keys indicates the number of key schemes which
fit the constraints of the matching words. Each of the affected key schemes has 30 trials (average x̄, standard deviation σ).

Arrangement of matching words Affected keys x̄ / 30 σ

K0 = K1 ∧ K2 = K3 16 7.0 4.4
K0 = K1 ∧ K2 ! K3 48 6.9 3.7
K0 ! K1 ∧ K2 = K3 48 6.9 4.1
K0 ! K1 ∧ K2 ! K3 144 7.0 3.2
K0 = K2 ∧ K1 = K3 16 10.8 2.8
K0 = K2 ∧ K1 ! K3 48 8.3 2.8
K0 ! K2 ∧ K1 = K3 48 8.3 3.6
K0 ! K2 ∧ K1 ! K3 144 5.7 3.2

exactly four matching words 4 13.0 3.4
exactly three matching words 48 9.8 3.2
exactly two matching words 180 6.5 3.1

no matching words 24 3.5 1.7

Table 4: Convergence generation for converged trials given number of matched words (average generation x̄, standard deviation σ).
Word Converged trials x̄ generation σ

exactly four matching words 52 / 120 1779.7 1352.0
exactly three matching words 471 / 1440 2196.9 1348.2
exactly two matching words 1175 / 5400 2408.9 1291.0

no matching words 85 / 720 2776.8 1207.8

7. Conclusion

From the first experiment, keys that were composed of more random words were more resilient to the EC attack.
Keys composed of all-on-bit words are more resilient than keys with all-off-bit words. Convergence rate is similarly
affected; more random words are more difficult. This EC method was capable of deriving degenerate keys since the
fitness function was based only on the ability of the key to encipher a message the same way as TEA given the same
key. In the second experiment, the difficulty of breaking keys was determined by matching (easier) or mismatching
(more difficult) words in (K0, K2) and (K1, K3). More matching words are easier to break with this EC than fewer
matching words. This is likely due to the word swapping behaviour of pitch adjustment operator borrowed from HS.
Degenerate keys are easiest to derive for key schemes which incorporate all on-bits in the first byte (0xFF000000) for
words in (K0, K1) and (K2, K3).
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Table 3: The proportion of convergences given three partitions of trials in the second experiment of this work. The first case splits apart trials based
on matches and mismatches of (K0, K1) and (K2, K3). The second case splits trials based on matches of (K0, K2) and (K1, K3). The third case
organizes cases based on the total number of matched words regardless of position. The affected keys indicates the number of key schemes which
fit the constraints of the matching words. Each of the affected key schemes has 30 trials (average x̄, standard deviation σ).

Arrangement of matching words Affected keys x̄ / 30 σ

K0 = K1 ∧ K2 = K3 16 7.0 4.4
K0 = K1 ∧ K2 ! K3 48 6.9 3.7
K0 ! K1 ∧ K2 = K3 48 6.9 4.1
K0 ! K1 ∧ K2 ! K3 144 7.0 3.2
K0 = K2 ∧ K1 = K3 16 10.8 2.8
K0 = K2 ∧ K1 ! K3 48 8.3 2.8
K0 ! K2 ∧ K1 = K3 48 8.3 3.6
K0 ! K2 ∧ K1 ! K3 144 5.7 3.2

exactly four matching words 4 13.0 3.4
exactly three matching words 48 9.8 3.2
exactly two matching words 180 6.5 3.1

no matching words 24 3.5 1.7

Table 4: Convergence generation for converged trials given number of matched words (average generation x̄, standard deviation σ).
Word Converged trials x̄ generation σ

exactly four matching words 52 / 120 1779.7 1352.0
exactly three matching words 471 / 1440 2196.9 1348.2
exactly two matching words 1175 / 5400 2408.9 1291.0

no matching words 85 / 720 2776.8 1207.8

7. Conclusion

From the first experiment, keys that were composed of more random words were more resilient to the EC attack.
Keys composed of all-on-bit words are more resilient than keys with all-off-bit words. Convergence rate is similarly
affected; more random words are more difficult. This EC method was capable of deriving degenerate keys since the
fitness function was based only on the ability of the key to encipher a message the same way as TEA given the same
key. In the second experiment, the difficulty of breaking keys was determined by matching (easier) or mismatching
(more difficult) words in (K0, K2) and (K1, K3). More matching words are easier to break with this EC than fewer
matching words. This is likely due to the word swapping behaviour of pitch adjustment operator borrowed from HS.
Degenerate keys are easiest to derive for key schemes which incorporate all on-bits in the first byte (0xFF000000) for
words in (K0, K1) and (K2, K3).
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Results
Experiment 2 - Summary Plots

Propor3on	
  of	
  Degenerate	
  Keys

• large degenerate areas

• (K0, K1) = FF00000

• (K2, K3) = FF00000
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Conclusions
Experiment 1

{0x00000000,	
  0xFFFFFFFF,	
  0xXXXXXXXX}

• more	
  random	
  words	
  implies	
  more	
  resilience

• all-­‐on-­‐bit	
  words	
  more	
  resilient	
  to	
  all-­‐off-­‐bit

• EC	
  method	
  can	
  find	
  equivalent	
  keys
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Conclusions
Experiment 2

{0xFF000000,	
  0x00FF0000,	
  0x0000FF00,	
  0x000000FF}

• matched	
  words	
  in	
  (K0,	
  K2)	
  and	
  (K1,	
  K3)	
  easier

• more	
  matched	
  words	
  even	
  easier	
  (due	
  to	
  HS)

• equivalent	
  keys	
  easiest	
  to	
  derive	
  for	
  words	
  
with	
  {0xFF000000}	
  in	
  (K0,	
  K1)	
  or	
  (K2,	
  K3).
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Conclusions

• EC	
  methods	
  capable	
  of	
  aAacking	
  one-­‐round	
  
Feistel	
  block	
  ciphers.

• HS	
  is	
  par3cularly	
  good	
  at	
  probing	
  solu3ons	
  
with	
  repe33ons.

• Equivalent	
  keys	
  can	
  also	
  be	
  derived.
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Results
Experiment 2 - Summary Plots

Propor3on	
  of	
  Convergences

• no obvious pattern
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Results
Experiment 2 - Summary Plots

Speed	
  of	
  Convergence

• no obvious pattern
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