Application of Machine Learning to the Automated Assembly of Barcode Sequences

Eddie YT Ma, Sujeevan Ratnasignham, Stefan C Kremer

Agenda

Problem Overview
From Samples to Contigs
The Need for Automation
A Sampling of the Data
Conclusion
Next Steps

Problem overview Data is growing fast ...

1.48M total barcode records, BOLD
1.8M named species described
~8.7M species on the planet
iBOL to barcode 5M species by 2016

How can we keep up with the growth?

Problem overview

From samples to contigs

Problem overview

The need for automation

Tracefile Inspection

Alignment

Repair or

Reject

Happy life at BOLD Software can help a lot

Can automatically reject traces

Still requires human intervention

Fully automate repairs?

Problem overview Let's decrease human effort

Machine learning goal:

Imitate human intelligence to create contigs from traces

Human expert only needed to sample solutions

What about existing techniques?

Problem overview Genomics vs Barcoding

- Genomics
 - Emphasize repeated coverage
 - A few large sequences
 - Need to deal with copy number variation
 - Barcoding
 - At most 2x coverage
 - Thousands of sequences
 - Copy numbers within barcode consistent

Start by looking at the data ...

Problem overview

Preliminary sampling of COI ...

Category	Records	Tracefiles
orders of insect		
Coleoptera	12449	26064
Diptera	2874	7670
Hymenoptera	5630	12836
Lepidoptera	37308	79944
vertebrates		
bird	3062	6301
mammal	20878	44502
fish	4169	8856

Our data is both the tracefile and the human verified contig.

Problem overview Preliminary sampling of COI ...

Present goal: Now, describe trends in the data Allows us to categorize known traces Future goal: Understand editing for known traces Apply pattern of editing to new traces (take editing to mean sequence repairing)

What are the quality values of traces selected in each group?

Quality values in each group

x = average quality value over all aligned positionsy = log count of occurrences

Quality values in each group

x = average quality value over all aligned positionsy = log count of occurrences

Does composition bias affect The number of human edits performed?

Composition bias and human edits (indels)

x = %AT-composition over accepted length of raw trace y = %Edits (indels) over length of alignment

Composition bias and human edits (indels)

x = %AT-composition over accepted length of raw trace y = %Edits (indels) over length of alignment

Does raw trace length affect The number of human edits performed?

Is there a trend in quality values over aligned positions?

Where are human experts editing the data?

Where are edits occurring? (Lepidoptera)

Where are edits occurring? (mammals)

Conclusion

Many bottlenecks during barcoding
Automation would help build contigs
Taxonomy of edits as varied as the barcodes they describe
Identified some trends in the data, visible from mass sampling

Next Steps (1) Continuing work with the data

Create a suite of characteristics for categories {phylum, class, order} depending on identity of COI
Use this in a vector categorizing

Vector classifying: neural networks, Bayesian classifier, etc.

strategy to match new trace files

Next Steps (2) Tracefile to contig automation

Develop an editing profile for each of the categories based on {wave, call, quality value} characters
Use a sequence to sequence mapping strategy to emit repaired calls based on above characters

Sequence mapping: neural networks, hidden Markov models, etc.

