
A Network Security Spotlight on SSL/TLS and HTTPS

A Student Presentation
(class notes)

CIS 6650 Computer Security

Eddie Yee Tak Ma

http://eddiema.ca

School of Computer Science
University of Guelph

Posted to the class on March 21st, 2011
Posted online on February 4th, 2012

Instructor:
Dr. Charlie Obimbo

All figures herein were illustrated by Eddie, and are expressly released to the public domain.



1 Preamble

This document is designed for students or professionals with some working knowledge of network
communication, computer science and computer security. After reading this presentation or at-
tending the accompanying presentation, the reader should have a general grasp of the TLS (and
HTTPS) specifications and what they have to offer. Moreover, the reader will know who the Inter-
net Engineering Task Force (IETF) is and where to look up the complete specifications published
by the IETF – useful for (1) diagnosing bugs within, or (2) deploying a new implementation.

2 Overview

When machines must communicate over a network, vulnerabilities exist which permit attacks to
occur. In this document, we discuss what security is conferred for such communications when a
protocol such as TLS is used.

In this presentation, we will first overview the Internet Protocol (IP) stack, then focus in on
the Transport Layer and Application Layer. We then describe a hypothetical application using
TLS and overview a typical session that such a client and server software will experience. Finally,
we stipulate the arrangement of data into Records when using TLS and also the accepted forms
for which we find certificates used for authentication in a widespread application of TLS called
HTTPS.

3 Layers upon Layers (Architecture)

Let’s review the Internet Protocol (IP) layers we use in day-to-day network communication. This
will allow us to discuss the where within the architecture we can evesdrop or secure communications.
Figure 1 is a schematic of the IP stack.

Figure 1: A schematic of the Internet Protocol (IP) stack.

As we move from the link layer to the application layer, the protocols become increasingly
abstract and specifically targetted toward a particular use. Note that the principal of data en-
capsulation stands so that a more abstract layer must never have any knowledge of its underlying
layers. The Link Layer represents the physical connections between machines e.g. IEEE802.11
(a family of wireless connections). The Internet Layer consists of a family of protocols that can



create the elementary software channels between machines e.g. IPv6 (Internet Protocol version 6)
or diagnose and report on said channels e.g. ICMPv6 (Internet Control Message Protocol). At the
Transport Layer, protocols exist which define the form in which data must be arranged in order
to be transceived. Finally, the Application Layer defines protocols that allow end-user (or system)
application software to communicate e.g. HTTP (hypertext transfer protocol) for browsers and
e.g. TLS/SSL (transport layer security/secure sockets layer)1 for encrypted and/or authenticated
communications.

3.1 Being Eve

Having identified the layers in our IP stack, we now have a frame of reference for discussing where
an attacker could potentially invade, alter or disrupt the flow of communications. Recall that we
should think of security in terms of Confidentiality, Integrity and Availability.

To compromise confidentiality or integrity, an attacker must access a network via an intercepted
physical connection between machines. The difficulty of this task varies with the communication
medium. As you are likely aware, the IEEE802.11 family of wireless connections is particularly
vulnerable especially when no encryption (or weak encryption) is used. Once access is obtained, the
attacker can begin to read the transmitted data or to introduce new data. Finally, availability can
be compromised by severing existing physical connections or by flooding machines with irrelevant
data as in a Denial of Service (DoS) attack.

3.2 Network Security in the Application Layer

In the present discussion, we will focus on the security that can be provided at the Application
Layer of the IP stack. It is here that we find TLS, HTTP and also HTTPS. Importantly, we cannot
mitigate attacks with respect to availability. For example, should a hardware connection be severed
or interrupted by an attacker, we are clearly working on a level that is too abstract to help.

We are however capable of increasing the security of our transcieved data in the respects of
confidentiality and integrity as TLS and HTTPS are each amenable to encryption and to a lesser
degree, authentication.

4 HTTPS and S-HTTP are not the same.

First, an aside; we must clarify the difference between HTTPS [4] and S-HTTP [3]. HTTPS and
S-HTTP can both be considered an implementation of HTTP with some security built-in (that
is, authentication and encryption). Both of these protocols were described and appeared in the
1990’s; however, only HTTPS enjoyed adoption by both Microsoft and Netscape leading to its
current widespread use. HTTPS (hypertext transfer protocol secure) is made secure by virtue of
being a deployment of HTTP over TLS while by stark contrast, S-HTTP (secure hypertext transfer
protocol) is made secure by its own protocols that extend the HTTP definition. It should be noted
that because S-HTTP never gained popularity, that it is often mistaken for HTTPS.

The items TLS (and HTTPS), and S-HTTP are all documented by The Internet Engineering
Task Force (IETF) [1]. The documents that describe standards and experimental items exists as a
collection of memos indexed by serial number.

1Transport Layer Security (TLS) is the successor to Secure Socket Layer (SSL).



Let us now discuss first TLS, then HTTPS.

5 Transport Layer Security (TLS)

The TLS defines a set of communication and security guidelines for a session-based connection
between a client and a server. Being meant to be deployed in the application layer, TLS is imple-
mented on top of the transport layer of the IP stack. TLS is not specific to a particular transport
protocol and can layered on top of anything that is deemed reliable by the implementer (i.e. you
may choose your own adventure). For instance, one is likely to use TCP/IP or a variant thereof but
not UDP. The looseness of this definition is owed to the fact that TLS as described is a protocol
(a set of agreed upon behaviours) – similar to an API (application program interface). Clients
and servers implementing TLS are expected to connect in a specific way (shake hands, bow) com-
municate with certain guidelines (no foul language) and part with sufficient notification (excusing
oneself politely and not slamming the door). In contrast, it is not a specific implementation (or even
implementation specific!) and makes no assumptions about programming languages or operating
systems and allows the client and server to negotiate on message authentication and encryption. All
of this can be defined (or at least greatly influenced) at the leisure of the implementer. The speci-
fication is abstracted at exactly a level that allows it to be both (1) versatile enough to run ontop
of a variety of transport protocols and (2) precise enough that stipulations about the arrangement
of data are guaranteed to be homogeneous.

Next, we need to discuss the idea of CipherSuites.

5.1 Introducing CipherSuites

The CipherSuite is the component of TLS which determines the strength of the security of a
particular TLS session. A CipherSuite is a named four-tuple of components which together are
used for the authentication and encryption of a session. In reality, this is communicated between
a client and a server as an integer and often decoded as some enumeration. These components
are (1) a key exchange algorithm, (2) an encryption algorithm, (3) a message authentication code
(MAC)2, (4) a pseudorandom function (PRF).

The key exchange algorithm determines how authentication should occur during handshaking.
The bulk encryption algorithm describes how messages are to be encrypted (block ciphers). The
MAC creates a cryptographic hash of each block in the message stream. Finally, the PRF creates
a 48-byte master secret which is then used by the client and server to create session keys.

As of this writing, the latest complete standard of TLS is described in RFC 5246 [6]. Because
the TLS definition is very extensive, we will go into detail for only the creation of a connection, the
permitted format of messages and the termination of a connection under normal circumstances.
Please see RFC 5246 [6] if you are interested about exceptional circumstances.

For the purposes of this discussion, let us assume to discuss a hypothetical implementation of
TLS over TCP/IP.

2Not to be confused with Mandatory Access Control in database security theory.



5.2 Handshaking

In a client-server arrangement, machines that are designated as servers allow specific software
to wait for incoming connections. Specifically, this software is restricted to a well defined set of
ports and transport protocols. We say that this software is listening for an incoming request for a
connection on such a given port on this machine. For TCP specifically, this software is said to bind
with the port and the port is said to be passive open. The purpose of a piece of software listening
on a port is so a connection can be made when a request to do so is heard.

A machine that requests a connection from a server is called a client.
Because our implementation runs ontop of TCP, all of the leg work that must be done by TCP

must be completed before anything more abstract using TLS can begin. Our client thus commits
the three-way handshake expected in the TCP protocol (please see IETF’s RFC 703 [2] if you would
like more details about TCP – suffice it to say that knowing that a handshake occurs is sufficient
for our discussion here).

We assume that the handshake of TCP (our chosen transport layer) has completed normally;
i.e. we assume a valid TCP connection exists between the client and the server. Note that while
data is arranged in packets when sent via TCP – data is further arranged in records when sent via
TLS.

We can now discuss how a Simple TLS handshake must proceed.

5.2.1 Step 1. Negotiation

The client sends a ClientHello to the server. The ClientHello is a record that contains the following
information: the protocol versions of TLS/SSL supported by the client; the CipherSuites that the
client supports; the compression methods supported and a randomly generated value. The client
may also provide a session ID if it is trying to resume a previous session with the server.

The server sends back an ServerHello to the client. The ServerHello is a record that contains:
the highest protocol version supported by both the client and the server; a single CipherSuite
supported by both; a single compression method support by both and a random value. The server
can send back the same session ID provided by the client if the server is able to resume the named
previous session.

The client and server random values are used to calculate several keys during this session.
The CipherSuite agreed upon by the client and the server indicates how authentication should

occur at this stage of the handshaking. If the CipherSuite supports it, the server sends a Certificate
message to the client. This certificate must be of the type X.509v3 (unless otherwise negotiated).

The server then sends a ServerHelloDone to indicate the conclusion of this negotiation.
The client replies with a ClientKeyExchange record that can contain a PreMasterSecret, a

public key or nothing depending on the CipherSuite chosen. For our hypothetical implementation,
we will assume that a PreMasterSecret is in the reply. The PreMasterSecret along with some
random numbers are used to create the 48-byte MasterSecret. The MasterSecret is independently
calculated for each the client and the server but is identical. The MasterSecret is used as the source
of entropy in the creation of the remaining keys used in this session.



5.2.2 Step 2. The Server checks the Client’s Work

The client sends a ChangeCipherSpec record to the server. All records after this one will be au-
thenticated and encrypted given the CipherSuite and MasterSecret chosen. An encrypted Finished
message is then sent by the client containing a hash and MAC of the previous handshake messages.
The server decrypts the Finished record and ensures that the hash and MAC are correct. If the
server does not recover the same solution as the client, then handshaking has failed the TLS must
be terminated (the application may also choose to terminate the below TCP connection).

5.2.3 Step 3. The Client checks the Server’s Work

The server sends a ChangeCipherSpec record followed with an encrypted Finished record. The client
checks that the hash and MAC contained therein can be decrypted with the chosen CipherSuite to
ensure that correct encryption was performed. If the client cannot recover the same solution, the
connection must be terminated.

5.2.4 Step 4. Exchanging Application Records

Since the handshake is complete, application records can now be exchanged. Authentication and
encryption of application records is provided by the CipherSuite given. In our hypothetical imple-
mentation, the actual useful application data is sent at this point (e.g. the streaming of media, the
serving of realtime remote sensing data, or the serving of static files).

Figure 2 summarizes the above discussion on the Simple TLS Handshake schematically.

5.3 Modification: Authenticating the Client as well

The above described procedure outlines the handshaking performed in TLS when only the server
is authenticated with a certificate (Simple TLS handshake). When the client also requires authen-
tication, the negotiation is changed so that the client sends a Certificate message after receiving
ServerHelloDone and a CertificateVerify message after sending ClientKeyExchange. The client’s
certificate consists of a public key and private key pair; the CertificateVerify message is an encryp-
tion of a signature on all previous handshaking messages using the client’s private key. The server
is able to authenticate the client by using the published public key.

5.4 A Little More on CipherSuites

Up until now, we have been very abstract about CipherSuites. Now that we have been given some
insight into their use, we can delve a bit deeper into the CipherSuite.

The authentication algorithms that the CipherSuite may define include Rivest-Shamir-Adleman
(RSA) and Diffie-Hellman (DH); both of which require the use of prime numbers in modulus
exponentiation. Encryption can be performed with Rivest Cipher 4 (RC4), Triple Data Encryption
Standard (3DES), and Advanced Encryption Standard (AES). You’ll notice that these encryption
algorithms are all block ciphers, rather than the prime exponentiation functions above. Block
ciphers are chosen because they are less computationally intensive. The MAC (essentially a hashing
function to test message integrity) can be performed with Message-Digest algorithm 5 (MD5) and
Secure Hash Algorithm (SHA).



Figure 2: A schematic of the handshaking procedure.



The listing below is an extraction from RFC 5246 [6] which shows a list of the possible Cipher-
Suites supported in TLS v1.2.

Cipher Suite Key Cipher Mac

Exchange

TLS_NULL_WITH_NULL_NULL NULL NULL NULL

TLS_RSA_WITH_NULL_MD5 RSA NULL MD5

TLS_RSA_WITH_NULL_SHA RSA NULL SHA

TLS_RSA_WITH_NULL_SHA256 RSA NULL SHA256

TLS_RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5

TLS_RSA_WITH_RC4_128_SHA RSA RC4_128 SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA

TLS_RSA_WITH_AES_128_CBC_SHA RSA AES_128_CBC SHA

TLS_RSA_WITH_AES_256_CBC_SHA RSA AES_256_CBC SHA

TLS_RSA_WITH_AES_128_CBC_SHA256 RSA AES_128_CBC SHA256

TLS_RSA_WITH_AES_256_CBC_SHA256 RSA AES_256_CBC SHA256

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA DH_DSS 3DES_EDE_CBC SHA

TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA DH_RSA 3DES_EDE_CBC SHA

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA DHE_DSS 3DES_EDE_CBC SHA

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA DHE_RSA 3DES_EDE_CBC SHA

TLS_DH_anon_WITH_RC4_128_MD5 DH_anon RC4_128 MD5

TLS_DH_anon_WITH_3DES_EDE_CBC_SHA DH_anon 3DES_EDE_CBC SHA

TLS_DH_DSS_WITH_AES_128_CBC_SHA DH_DSS AES_128_CBC SHA

TLS_DH_RSA_WITH_AES_128_CBC_SHA DH_RSA AES_128_CBC SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA DHE_DSS AES_128_CBC SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA DHE_RSA AES_128_CBC SHA

TLS_DH_anon_WITH_AES_128_CBC_SHA DH_anon AES_128_CBC SHA

TLS_DH_DSS_WITH_AES_256_CBC_SHA DH_DSS AES_256_CBC SHA

TLS_DH_RSA_WITH_AES_256_CBC_SHA DH_RSA AES_256_CBC SHA

TLS_DHE_DSS_WITH_AES_256_CBC_SHA DHE_DSS AES_256_CBC SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA DHE_RSA AES_256_CBC SHA

TLS_DH_anon_WITH_AES_256_CBC_SHA DH_anon AES_256_CBC SHA

TLS_DH_DSS_WITH_AES_128_CBC_SHA256 DH_DSS AES_128_CBC SHA256

TLS_DH_RSA_WITH_AES_128_CBC_SHA256 DH_RSA AES_128_CBC SHA256

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 DHE_DSS AES_128_CBC SHA256

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 DHE_RSA AES_128_CBC SHA256

TLS_DH_anon_WITH_AES_128_CBC_SHA256 DH_anon AES_128_CBC SHA256

TLS_DH_DSS_WITH_AES_256_CBC_SHA256 DH_DSS AES_256_CBC SHA256

TLS_DH_RSA_WITH_AES_256_CBC_SHA256 DH_RSA AES_256_CBC SHA256

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 DHE_DSS AES_256_CBC SHA256

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 DHE_RSA AES_256_CBC SHA256

TLS_DH_anon_WITH_AES_256_CBC_SHA256 DH_anon AES_256_CBC SHA256



5.5 The Record Protocol

Having succeeded in handshaking, the client and server can now exchange data using their agreed
upon encryption method expressed in the selected CipherSuite. The application messages are sent
in the Record Protocol format. Figure 3 is a schematic that indicates the arrangement of data in
a record protocol.

Figure 3: A schematic of the data arranged in a TLS record.

The Content type field is a single byte that may take the values 22 (0x16) for handshake,
20 (0x14) for ChangeCipherSpec, 23 (0x17) for application or 21 (0x15) for alert (exceptional
or terminational circumstances). The version (3, 0) corresponds to SSL 3.0; versions (3, [1..3])
correspond to TLS versions 1.[0..2] respectively. The length indicates the protocol message length
only (i.e. it does not include the number of bytes in the MAC or block cipher padding). Notice
that encryption of the message and MAC is handled exclusively by TLS and the application logic
should not have any knowledge of it. Figure 4 is a schematic of a record in our fictitious protocol.

Figure 4: A schematic of a record for our fictitious application – in real life, TLS will encrypt the
message.

Notice there can never actually be a record like this in real life as this record has neither



authentication nor encryption but only a MAC in the form of a 128-bit MD5. In real life, the text
would be encrypted with a block cypher and padding may be introduced to satisfy the number of
bits the block cypher requires to work.

5.6 Closing the Connection

Both the server and the client are able to signal to the other that the session should end. The closing
message increases the difficulty in performing a truncation attack. The message CloseNotify is sent.
The sender must terminate the write side of the connection immediately after sending CloseNotify.
A recipient of CloseNotify must immediately send back a CloseNotify. The sender does not need to
wait for a CloseNotify reply before terminating the read side of the connection. In our hypothetical
implementation, if the TCP connection needs to persist after the TLS layer is closed, then the
sender must wait for a CloseNotify. Otherwise, should the underlying transport layer be closed
immediately anyway, then there is no need to wait.

6 HTTPS

Now that we are aware of what TLS has to offer in terms of authentication (at least the server
is known and verified with a public key), encryption (the data has been scrambled with block
ciphers), and integrity (a hash function is used at the end of each block); we can discuss a practical
application we are all familiar with – HTTP. If we transmit HTTP on top of TLS as the application
data (using Application Records), the result is HTTPS [4]. This means that we use TLS to wrap
all of the messages sent e.g. from a webserver to a webbrowser.

Let us take a moment to appreciate this. When you visit a URL with the HTTPS protocol,
your browser first negotiates a connection on port 443 (instead of port 80 for plain HTTP) with
the server by passing along a ClientHello. The two exchange random numbers, a list of supported
CipherSuites and compression schemes, and then the client retrieves a certificate from the server
for authentication. Then with an agreed upon CipherSuite, the client receives all of the data
requested and decrypts it with the best supported encryption block cypher that the writers of your
browser software implemented. All of the bytes have been received and decrypted and the page is
cached and rendered in your browser. The HTTPS connection is terminated; the underlying TLS
connection is terminated; the underlying TCP transport is terminated.

The only thing missing is the authentication of the certificate.
The certificate is considered authentic by a browser when the writer of its software trusts a

certificate authority who trusts the server with the certificate. This means that you have delegated
your own decision to trust a site to both the browser authors and the certificate authority.

Human error and malice notwithstanding, our discussion proceeds where all parties are trust-
worthy.

The public key certificate provided for authentication during handshaking contains a hostname
(domain name3). This hostname is checked against the URI (URL4) that should belong to the
server – when these two values are not the same, then something is wrong (perhaps a few bits
were flipped during transport). A connection is still permitted where authentication has failed but

3For our purposes, a hostname and a domain name can considered be the same.
4For our purposes, a URI and a URL can also be considered the same.



encryption still persists. In this case, the browser software must present the user with notification
that the certificate is not correct given the server at the specified URL. A widely used certificate
format is X.509 [5]. A schematic of this certificate is shown in Figure 5.

Figure 5: A schematic of the data arranged in a certificate transmitted during handshaking.

Notice that the Public Key is used for encryption using the number theory of large primes and
modulus exponentiation as we have seen before.

7 Conclusion

Having read this document or attended the accompanying talk, you should now have a general
understanding of how SSL/HTTPS improves security for HTTP. We have explained the components
of a simple handshake and indicated what is changed when the client is also authenticated. We
have described the very important CipherSuite and also the formats of the record and certificates
used during communication. Finally, you have been made aware of the IETF and where to find
the relevant specification documents.



References

[1] The internet engineering task force (ietf). http://www.ietf.org (accessed March 2011).

[2] University of Southern California Information Sciences Institute. Rfc 793 transmission control
protocol functional specification, September 1981. http://tools.ietf.org/html/rfc793 (accessed
March 2011).

[3] The Internet Society. The secure hypertext transfer protocol, AUGUST 1999.
http://tools.ietf.org/html/rfc2660 (accessed March 2011).

[4] The Internet Society. Rfc 2818 http over tls, May 2000. http://tools.ietf.org/html/rfc2818
(accessed March 2011).

[5] The IETF Trust. Internet x.509 public key infrastructure certificate and certificate revocation
list (crl) profile, May 2008. http://tools.ietf.org/html/rfc5280 (accessed March 2011).

[6] The IETF Trust. Rfc 5246 the transport layer security (tls) protocol version 1.2, August 2008.
http://tools.ietf.org/html/rfc5246 (accessed March 2011).


